Atnaujinkite slapukų nuostatas

El. knyga: Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use

( R&D Fellow, DuPont and Dow (retired)
BA Morris Consulting, LLC)
  • Formatas: PDF+DRM
  • Serija: Plastics Design Library
  • Išleidimo metai: 01-Sep-2016
  • Leidėjas: William Andrew Publishing
  • Kalba: eng
  • ISBN-13: 9780323243254
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Plastics Design Library
  • Išleidimo metai: 01-Sep-2016
  • Leidėjas: William Andrew Publishing
  • Kalba: eng
  • ISBN-13: 9780323243254
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Written by an expert with over 25 years experience in packaging, this book is a comprehensive guide to the use of plastic films in flexible packaging, covering scientific principles, properties, processes and end use considerations.

The book brings the science of multilayer films to the practitioner in a concise and impactful way, providing the fundamental understanding required to improve product design, material selection and processes. This includes information on why one material is favoured over another for a particular application, or how the film or coating affects material properties.

Detailed descriptions and analysis of the key properties of packaging films are provided from both an engineering and scientific perspective. End-use effects are also covered in detail, providing key insight into the way that the products being packaged influence film properties and design.

The book bridges the gap between key scientific literature and the practical challenges faced by the flexible packaging industry, providing essential scientific insight, best practice techniques, environmental sustainability information and key principles of structure design to enable engineers and scientists to deliver superior products with reduced development time and cost.

• A comprehensive reference book, providing essential information on all aspects of multilayer films in flexible packaging. • Aids in material selection and processing, shortening development times and delivering stronger products. • Bridges the gap between scientific principles and key challenges in the packaging industry, with practical explanations to assist practitioners in overcoming those challenges

Daugiau informacijos

A comprehensive reference work covering the scientific principles, properties, processes and end-use considerations of multilayer films in flexible packaging.
Preface xv
Part I Why Multilayer Films?
1 Introduction
3(22)
1.1 History of Packaging
3(4)
1.2 Benefits of Packaging
7(2)
1.3 Consumption Patterns
9(2)
1.4 Packaging Value Chain
11(2)
1.5 Needs Along the Value Chain
13(2)
1.5.1 Consumer Needs
13(1)
1.5.2 End-User Needs
13(1)
1.5.3 Converter Needs
14(1)
1.6 Assembling a Package: Benefits of Multiple Layers
15(3)
1.7 Packaging Trends in the Context of the Value Chain
18(1)
References
19(6)
Part II Basic Processes
2 Converting Processes
25(26)
2.1 Extrusion
25(4)
2.2 Film Converting
29(11)
2.2.1 Blown Film
29(7)
2.2.2 Cast Film
36(4)
2.3 Coating and Lamination
40(4)
2.3.1 Extrusion Coating and Lamination
40(2)
2.3.2 Adhesive Lamination
42(2)
2.4 Orientation
44(2)
2.4.1 Tenter Frame
45(1)
2.4.2 Double Bubble
45(1)
2.4.3 Machine Direction Orientation
46(1)
2.5 Printing
46(1)
2.5.1 Gravure Printing
46(1)
2.5.2 Flexographic Printing
47(1)
References
47(4)
3 Packaging Equipment
51(18)
3.1 Brief Description of Packaging Equipment
51(5)
3.1.1 Pouch Machines
51(2)
3.1.2 Horizontal Thermoform Fill Seal
53(1)
3.1.3 Tray Sealer
54(1)
3.1.4 Aseptic Packaging
54(1)
3.1.5 Retail Packaging
54(2)
3.2 Unit Operations
56(9)
3.2.1 Registration
57(1)
3.2.2 Thermoforming
58(1)
3.2.3 Filling
58(1)
3.2.4 Gas Flush/Modified Atmosphere Packaging
59(1)
3.2.5 Heat Sealing
60(5)
References
65(4)
Part III Material Basics
4 Commonly Used Resins and Substrates in Flexible Packaging
69(52)
4.1 Resin and Substrate Function
69(3)
4.2 Commonly Used Resins in Flexible Packaging
72(32)
4.2.1 Polymer Chemistry as It Relates to Packaging Performance
72(6)
4.2.2 Polyethylene
78(6)
4.2.3 Polypropylene
84(1)
4.2.4 Specialty Polyolefins
85(1)
4.2.5 Polyamides
86(1)
4.2.6 Polyvinyl Alcohol
87(1)
4.2.7 Ethylene Vinyl Alcohol
87(1)
4.2.8 Polyvinylidene Chloride
88(1)
4.2.9 Polychlorotrifluoroethylene
89(1)
4.2.10 Tie Resins and Adhesives
89(1)
4.2.11 Polyester
89(2)
4.2.12 Polystyrene
91(1)
4.2.13 Polyvinyl Chloride
91(1)
4.2.14 Biobased Polymers
91(3)
4.2.15 Additives
94(10)
4.3 Commonly Used Substrates in Flexible Packaging
104(4)
4.3.1 Oriented Polypropylene
104(1)
4.3.2 Aluminum Foil
104(1)
4.3.3 Oriented Polyester
105(1)
4.3.4 Metallized Film
105(1)
4.3.5 Cellophane
106(1)
4.3.6 Paper and Paperboard
106(2)
4.4 Material Specifications
108(2)
4.5 Regulatory Considerations
110(3)
4.5.1 Food Packaging Regulatory Compliance in the United States
111(1)
4.5.2 Food Packaging Regulatory Compliance in the European Union
112(1)
4.5.3 Health-Care Packaging
113(1)
References
113(8)
5 Rheology of Polymer Melts
121(28)
5.1 Basic Terms
121(2)
5.2 Importance of Rheology in Flexible Packaging
123(8)
5.2.1 Extrusion and Film Fabrication
124(6)
5.2.2 End Use
130(1)
5.2.3 Polymer Characterization
130(1)
5.3 Rheological Measurements
131(7)
5.3.1 Melt Index or Melt Flow Rate
131(1)
5.3.2 Solution Viscosity
132(1)
5.3.3 Capillary Melt Shear Viscometry
133(2)
5.3.4 Cone and Plate Viscometry
135(1)
5.3.5 Dynamic Rheology Measurements
135(1)
5.3.6 Extensional Measurements
136(2)
5.4 Factors Influencing Polymer Rheology
138(3)
5.4.1 Strain and Rate of Strain
138(1)
5.4.2 Temperature
138(1)
5.4.3 Pressure
139(1)
5.4.4 Time
139(1)
5.4.5 Molecular Factors
139(2)
5.5 Relaxation, Creep, and Constitutive Equations
141(3)
5.5.1 Stress Relaxation
141(1)
5.5.2 Creep/Recovery
142(2)
Further Reading
144(1)
References
144(5)
6 Polymer Blending for Packaging Applications
149(32)
6.1 Introduction
149(1)
6.2 Why Blend?
149(1)
6.3 Blending Processes
150(5)
6.3.1 Pellet Premixing
151(1)
6.3.2 Melt Blending
152(3)
6.4 Physics of Blending
155(14)
6.4.1 Thermodynamics
157(3)
6.4.2 Morphology Development in Immiscible Blends
160(9)
6.5 Morphology Development in Blown Film
169(1)
6.6 Dispersion of Rigid Particles and Nanocomposites
169(2)
6.7 Rheology of Polymer Blends
171(1)
6.8 Conclusion
172(1)
References
173(8)
Part IV Film Properties
7 Heat Seal
181(78)
7.1 Why It Is Important
181(1)
7.2 How to Measure
182(6)
7.2.1 Seal Strength of Packages: The Peel Test
182(1)
7.2.2 Laboratory Heat Seal Tests
183(1)
7.2.3 Laboratory Hot Tack Measurement
184(4)
7.2.4 Relating Lab Results to Packaging Line Studies
188(1)
7.3 Typical Values
188(3)
7.3.1 Heat Seal Curves
188(2)
7.3.2 Hot Tack Curves
190(1)
7.4 Factors That Influence Heat Seal Performance
191(7)
7.4.1 Heat Seal Operation
191(2)
7.4.2 Film Fabrication and Package Design
193(5)
7.5 Science of Heat Sealing
198(14)
7.5.1 Early Theories of Auto Adhesion
199(1)
7.5.2 Bonding at the Interface
200(1)
7.5.3 Diffusion at the Interface
200(5)
7.5.4 Interfacial Bond Strength and Crystallization
205(2)
7.5.5 Hot Tack
207(3)
7.5.6 Fracture Mechanics
210(2)
7.6 Modeling Heat Seal and Hot Tack
212(18)
7.6.1 Heat Seal
212(4)
7.6.2 Hot Tack
216(3)
7.6.3 Squeeze Flow
219(11)
7.7 Easy-Open Seal Technology
230(8)
7.7.1 Introduction
230(1)
7.7.2 Examples
231(1)
7.7.3 PB-1 Blends
232(3)
7.7.4 Lidding Films
235(3)
7.8 Reclosable Seal Technologies
238(1)
7.9 Ultrasonic Sealing
239(3)
7.10 Failure Analysis and Troubleshooting
242(6)
7.10.1 Types of Seal Failures
242(1)
7.10.2 Common Causes of Failure
242(5)
7.10.3 Analytical Techniques
247(1)
7.10.4 Troubleshooting Checklist
247(1)
7.11 Selecting Sealant Resins
248(5)
References
253(6)
8 Barrier
259(50)
8.1 Why It Is Important
259(2)
8.2 How to Measure
261(8)
8.2.1 Definitions
261(5)
8.2.2 Gas Permeation
266(2)
8.2.3 Moisture Vapor Transmission Rate
268(1)
8.2.4 Permeation of Organic Molecules
269(1)
8.3 Typical Permeation Values
269(9)
8.3.1 Gas Barrier
269(3)
8.3.2 Moisture Vapor Barrier
272(2)
8.3.3 Grease and Oil Resistance
274(3)
8.3.4 Organic Molecules
277(1)
8.3.5 Chemical Resistance
278(1)
8.3.6 Light Barrier
278(1)
8.4 Science of Permeation
278(15)
8.4.1 Permeation Through Polymer Films
278(12)
8.4.1.1 Permeation Through Multilayer Films
280(1)
8.4.1.2 Factors that Affect Permeability Through Polymer Films
281(9)
8.4.2 Permeation Through Defects, Pinholes, and Perforations
290(3)
8.4.2.1 Permeation Through Pinholes: High Barrier Packaging
290(2)
8.4.2.2 Permeation Through Perforations or Channels
292(1)
8.5 Emerging Technologies
293(7)
8.5.1 Oxygen Scavenging
293(1)
8.5.2 Layer Multiplication
294(3)
8.5.3 Nanocomposites
297(2)
8.5.4 Advanced Coatings
299(1)
References
300(9)
9 Strength, Stiffness, and Abuse Resistance
309(42)
9.1 Why It is Important
309(2)
9.1.1 Strength
309(1)
9.1.2 Stiffness
309(1)
9.1.3 Abuse Resistance
310(1)
9.2 How to Measure
311(7)
9.2.1 Mechanical Properties
311(2)
9.2.2 Stiffness
313(1)
9.2.3 Tear Strength
314(1)
9.2.4 Puncture and Impact Resistance
315(1)
9.2.5 Scratch and Abrasion Resistance
316(1)
9.2.6 Flex Fatigue
317(1)
9.2.7 Shipping Tests for Package Durability
317(1)
9.3 Typical Values
318(1)
9.4 Engineering Principles for Multilayer Films
318(27)
9.4.1 Mechanical Properties
318(5)
9.4.2 Bending Stiffness
323(4)
9.4.3 Puncture, Scratch, and Abrasion Resistance
327(8)
9.4.3.1 Puncture Resistance of Polyethylene Films
327(1)
9.4.3.2 Puncture Resistance of Laminates
328(4)
9.4.3.3 Scratch Resistance
332(2)
9.4.3.4 Abrasion Resistance
334(1)
9.4.4 Tear Resistance
335(8)
9.4.4.1 Polyethylene Films
336(4)
9.4.4.2 Directional Tear Technology
340(2)
9.4.4.3 Multilayer Films
342(1)
9.4.5 Essential Work of Fracture
343(1)
9.4.6 Microlayer Technology
344(1)
References
345(6)
10 Adhesion
351(50)
10.1 Why Adhesion is Important
351(1)
10.2 How to Measure Adhesion
352(8)
10.2.1 Peel Test
352(2)
10.2.2 Adhesion of Coatings
354(1)
10.2.3 Fracture Mechanics Analysis of Peel Test
354(6)
10.3 Fundamentals
360(11)
10.3.1 Thermodynamics of Adhesion
361(4)
10.3.1.1 Surface and Interfacial Tension
361(2)
10.3.1.2 Wetting and Work of Adhesion
363(1)
10.3.1.3 Practical Guidelines
363(2)
10.3.2 Mechanical Interlocking
365(1)
10.3.3 Diffusion
366(1)
10.3.4 Chemical Interaction
367(3)
10.3.5 Boundary Layer
370(1)
10.4 Tie Resin Technology
371(25)
10.4.1 Extrusion Coating and Lamination
371(7)
10.4.1.1 Substrate
371(2)
10.4.1.2 Polymer
373(1)
10.4.1.3 Examples From the Literature
374(1)
10.4.1.4 Choosing a Coating Adhesive Resin
375(3)
10.4.2 Coextrudable Adhesives
378(23)
10.4.2.1 Coextrudable Tie Resin Technology
378(2)
10.4.2.2 Factors Affecting Peel Strength in Coextrusion
380(12)
10.4.2.3 Choosing a Coextrudable Tie Resin
392(4)
References
396(5)
11 Thermoforming, Orientation, and Shrink
401(34)
11.1 Thermoforming
401(10)
11.1.1 Thermoforming Part Testing
401(1)
11.1.2 Material Properties and Testing
402(3)
11.1.3 Factors that Affect Thermoforming
405(5)
11.1.3.1 Material Parameters
405(1)
11.1.3.2 Film Structure
405(1)
11.1.3.3 Film Temperature
406(3)
11.1.3.4 Processing Parameters
409(1)
11.1.3.5 Interlayer Adhesion After Forming
410(1)
11.1.4 Modeling
410(1)
11.2 Orientation and Shrink
411(18)
11.2.1 Why It Is Important
412(1)
11.2.2 How to Measure
413(2)
11.2.2.1 Orientation
413(1)
11.2.2.2 Shrink and Shrink Force
413(2)
11.2.3 Factors that Affect Orientation and Shrink
415(5)
11.2.3.1 Polymer Characteristics
415(1)
11.2.3.2 Processing
416(4)
11.2.4 Oriented Multilayer Films
420(15)
11.2.4.1 Laminations
420(1)
11.2.4.2 Base Films
420(1)
11.2.4.3 Multilayer Barrier Shrink Film and Bags
420(1)
11.2.4.4 Multilayer Nonshrink Barrier Films
421(3)
11.2.4.5 Shrink Films and Labels
424(2)
11.2.4.6 Stretch and Cling Films
426(2)
11.2.4.7 Adhesion
428(1)
References
429(6)
12 Frictional and Optical Properties
435(30)
12.1 Frictional Properties
435(18)
12.1.1 Why Frictional Properties Are Important
435(1)
12.1.2 How It Is Measured
436(1)
12.1.2.1 Coefficient of Friction
436(1)
12.1.2.2 Blocking
437(1)
12.1.3 Additive Technology
437(4)
12.1.3.1 Why Friction Arises and How Additives Work
437(2)
12.1.3.2 Migrating Additives
439(1)
12.1.3.3 Nonmigrating Additives (Slip and Antiblock)
440(1)
12.1.4 Migratory Slip Additive Performance Factors
441(12)
12.1.4.1 Polymer Surface
441(1)
12.1.4.2 Migration of Slip Additives
442(4)
12.1.4.3 Amide Structure
446(1)
12.1.4.4 Film Fabrication
447(1)
12.1.4.5 Film Thickness and Additive Level
447(2)
12.1.4.6 Storage Temperature
449(1)
12.1.4.7 Effect of Other Additives
449(1)
12.1.4.8 Coextrusion and Multilayer Structures
450(1)
12.1.4.9 Problems With Too Much Slip
451(1)
12.1.4.10 Tips and Classic References
452(1)
12.2 Optical Properties
453(5)
12.2.1 Definitions and Measurement
453(1)
12.2.2 Haze and Transparency
454(4)
12.2.2.1 Monolayer Polyethylene Film
454(1)
12.2.2.2 Coextrusion
455(1)
12.2.2.3 Other Factors
456(2)
12.2.3 Gloss
458(1)
12.2.4 Specialty Microlayer Films
458(1)
References
458(7)
Part V Effect of the Converting Process on Properties
13 Effect of Processing on Quality
465(50)
13.1 Thermal Stability
465(2)
13.2 Die Drool
467(3)
13.3 Moisture-Related Issues
470(1)
13.4 Flow Maldistribution and Instability Issues
470(24)
13.4.1 Sharkskin and Extrudate Distortion
470(2)
13.4.2 Draw Down Instabilities in Extrusion Coating/Lamination and Cast Film
472(7)
13.4.3 Bubble Instability in Blown Film
479(4)
13.4.4 Layer Rearrangement in Coextrusion
483(3)
13.4.5 Interfacial Instabilities
486(8)
13.5 Curl
494(14)
13.5.1 Causes
494(3)
13.5.2 Strategies for Reducing Curl
497(5)
13.5.3 Modeling
502(6)
References
508(5)
Appendix: Two-Layer Curl Model
513(2)
14 Effect of Process on Properties
515(24)
14.1 Stress—Strain History in Blown Film
515(10)
14.1.1 Monolayer Blown Film
516(3)
14.1.2 Coextrusion Blown Film
519(6)
14.2 Air- Versus Water-Quench Blown Film
525(5)
14.3 Development of Blend Morphology in Blown Film
530(4)
14.3.1 Material Characteristics
532(1)
14.3.2 Processing Factors
533(1)
References
534(5)
15 Effect of Processing on Interlayer Adhesion
539(78)
15.1 Adhesion to Substrates in Extrusion Coating
539(55)
15.1.1 Extruder and Die
539(1)
15.1.2 Air Gap
540(26)
15.1.2.1 Oxidation
542(12)
15.1.2.2 Stress and Orientation
554(5)
15.1.2.3 Cooling
559(6)
15.1.2.4 General Guidelines
565(1)
15.1.3 Nip
566(7)
15.1.3.1 Time in Nip and Solidification
567(2)
15.1.3.2 Other Examples
569(4)
15.1.4 Case Study: Effect of Coating Thickness on Peel Strength
573(21)
15.1.4.1 Porous Substrates
576(6)
15.1.4.2 Nonporous Substrates
582(6)
15.1.4.3 Analysis of Peel Test
588(6)
15.2 Interlayer Adhesion in Coextrusion
594(15)
15.2.1 Initial Process Time Studies
594(4)
15.2.2 Time, Temperature, and Area Creation
598(5)
15.2.3 Process Time Master Curve
603(5)
15.2.4 Flow Accelerated Reaction Rate
608(1)
References
609(3)
Appendix: Relating Stress to Process Control Variables
612(5)
Part VI End Use Considerations
16 End-Use Factors Influencing the Design of Flexible Packaging
617(40)
16.1 Environmental Effects on Package Performance
617(6)
16.1.1 Temperature
617(2)
16.1.2 Humidity
619(2)
16.1.3 Pressure
621(1)
16.1.4 Irradiation
621(2)
16.2 Packaging—Product Interactions
623(13)
16.2.1 Loss of Package Integrity
623(5)
16.2.1.1 Peel Strength and Delamination
624(4)
16.2.1.2 Environmental Stress Cracking
628(1)
16.2.2 Organoleptics
628(5)
16.2.2.1 Impartation
628(2)
16.2.2.2 Scalping
630(3)
16.2.3 Active Packaging
633(7)
16.2.3.1 Odor Scavenging
633(1)
16.2.3.2 Antimicrobial
634(2)
16.3 Aging
636(4)
16.4 General Considerations
640(1)
16.5 Cost
640(9)
16.5.1 Financial Costs
640(2)
16.5.2 Environmental Costs
642(7)
References
649(8)
Part VII Structure Design and Modeling
17 Analytical and Modeling Tools for Structure Design and Process Optimization
657(28)
17.1 Identification of Packaging Structures
657(3)
17.1.1 Microscopy
657(1)
17.1.2 Fourier Transform Infrared Spectroscopy
658(1)
17.1.3 Differential Scanning Calorimetry
659(1)
17.1.4 Other Techniques
660(1)
17.2 Modeling
660(21)
17.2.1 Types of Modeling
661(5)
17.2.1.1 Attribute Models
661(1)
17.2.1.2 Empirical and Statistical Models
661(4)
17.2.1.3 Theoretical/Fundamental Models
665(1)
17.2.2 Examples of Models and Their Use in Flexible Packaging
666(7)
17.2.2.1 Package Design
666(5)
17.2.2.2 Processing/Converting
671(2)
17.2.3 Case Study
673(8)
References
681(4)
Appendix A: Writing Guide for Packaging Films and Other Multilayer Structures 685(12)
Appendix B: Examples of Flexible Packaging Film Structures 697(14)
Index 711
Barry A. Morris retired from Dow as an R&D Fellow with over 30 years of experience in packaging innovation and technology. He has had a variety of roles supporting the ethylene copolymer business at Dow (formerly DuPont), including technical service, application development and R&D. He holds twelve U.S. patents and has written for over 125 publications. He is a Fellow of the Society of Plastics Engineers and a long-time board member of the SPE Flexible Packaging and Extrusion Divisions. He has won several industry awards for his contributions to the advancement of flexible packaging technology, including the TAPPI PLACE Division Technical Award (2005), SPEs Bruce Maddock Award (2018) and the DuPont Pedersen Medal (2016).