Atnaujinkite slapukų nuostatas

El. knyga: Scrapbook of Complex Curve Theory

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This fine book by Herb Clemens quickly became a favorite of many algebraic geometers when it was first published in 1980. It has been popular with novices and experts ever since. It is written as a book of 'impressions' of a journey through the theory of complex algebraic curves. Many topics of compelling beauty occur along the way. A cursory glance at the subjects visited reveals a wonderfully eclectic selection, from conics and cubics to theta functions, Jacobians, and questions of moduli. By the end of the book, the theme of theta functions becomes clear, culminating in the Schottky problem. The author's intent was to motivate further study and to stimulate mathematical activity. The attentive reader will learn much about complex algebraic curves and the tools used to study them. The book can be especially useful to anyone preparing a course on the topic of complex curves or anyone interested in supplementing his/her reading.
Preface to the Second Edition vii
Preface ix
Notation xi
Conics
Hyperbola Shadows
1(4)
Real Projective Space, The ``Unifier''
5(2)
Complex Projective Space, The Great ``Unifier''
7(2)
Linear Families of Conics
9(2)
The Mystic Hexagon
11(2)
The Cross Ratio
13(4)
Cayley's Way of Doing Geometries of Constant Curvature
17(3)
Through the Looking Glass
20(2)
The Polar Curve
22(4)
Perpendiculars in Hyperbolic Space
26(4)
Circles in the K-Geometry
30(3)
Rational Points on Conics
33(4)
Cubics
Inflection Points
37(2)
Normal Form for a Cubic
39(3)
Cubics as Topological Groups
42(3)
The Group of Rational Points on a Cubic
45(5)
A Thought about Complex Conjugation
50(1)
Some Meromorphic Functions on Cubics
51(1)
Cross Ratio Revisited, A Moduli Space for Cubics
52(1)
The Abelian Differential on a Cubic
53(2)
The Ellipitic Integral
55(3)
The Picard-Fuchs Equation
58(4)
Rational Points on Cubics over Fp
62(3)
Manin's Result: The Unity of Mathematics
65(4)
Some Remarks on Serre Dulity
69(4)
Theta Functions
Back to the Group Law on Cubics
73(2)
You Can't Parametrize a Smooth Cubic Algebraically
75(3)
Meromorphic Functions on Elliptic Curves
78(4)
Meromorphic Functions on Plan Cubics
82(3)
The Weierstrass p-Function
85(4)
Theta-Null Values Give Moduli of Elliptic Curves
89(3)
The Moduli Space of ``Level-Two Structures'' on Elliptic Curves
92(3)
Automorphisms of Elliptic Curves
95(1)
The Moduli Space of Elliptic Curves
96(2)
And So, By the Way, We Get Picard's Theorem
98(2)
The Complex Structure of M
100(2)
The j-Invariant of an Elliptic Curve
102(4)
Theta-Nulls as Modular Forms
106(3)
A Fundamental Domain for Γ2
109(2)
Jacobi's Identity
111(2)
The Jacobian Variety
Cohomology of a Complex Curve
113(3)
Duality
116(2)
The Chern Class of a Holomorphic Line Bundle
118(4)
Abel's Theorem for Curves
122(5)
The Classical Version of Abel's Theorem
127(4)
The Jacobi Inversion Theorem
131(1)
Back to Theta Functions
132(2)
The Basic Computation
134(2)
Riemann's Theorem
136(2)
Linear Systems of Degree g
138(1)
Riemann's Constant
139(3)
Riemann's Singularities Theorem
142(5)
Quartics and Quintics
Topology of Plane Quartics
147(3)
The Twenty-Eight Bitangents
150(5)
Where Are the Hyperelliptic Curves of Genus 3?
155(3)
Quintics
158(3)
The Schottky Relation
Prym Varieties
161(3)
Riemann's Theta Relation
164(3)
Products of Pairs of Theta Functions
167(1)
A Proportionality Theorem Relating Jacobians and Pryms
168(5)
The Proportionality Theorem of Schottky-Jung
173(1)
The Schottky Relation
174(7)
References 181(2)
Additional References 183(2)
Index 185