Atnaujinkite slapukų nuostatas

El. knyga: Select Ideas in Partial Differential Equations

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides a concise but thorough introduction to partial differential equations which model phenomena that vary in both space and time. The author begins with a full explanation of the fundamental linear partial differential equations of physics.  The text continues with methods to understand and solve these equations leading ultimately to the solutions of Maxwell’s equations. The author then addresses nonlinearity and provides examples of separation of variables, linearizing change of variables, inverse scattering transform, and numerical methods for select nonlinear equations. Next, the book presents rich sources of advanced techniques and strategies for the study of nonlinear partial differential equations. This second edition includes updates, additional examples, and a new chapter on reaction–diffusion equations. Ultimately, this book is an essential resource for readers in applied mathematics, physics, chemistry, biology, and engineering who are interested in learning about the myriad techniques that have been developed to model and solve linear and nonlinear partial differential equations. 

Introduction.- The Equations of Maxwell.- Laplace's Equation.- Fourier
Series, Bessel Functions, and Mathematical Physics .- The Fourier Transform,
Heat Conduction, and the Wave Equation.- The ThreeDimensional Wave
Equation.- An Introduction to Nonlinear Partial Differential Equations.-
Raman Scattering and Numerical Methods.- ReactionDiffusion Equations.- The
HartmanGrobman Theorem.
Peter J. Costa, Ph.D., is a Principal Applied Mathematician at Hologic Incorporated in Marlborough, MA. Dr. Costa is the cocreator of MATLABs Symbolic Math Toolbox. He has developed mathematical methods for the diagnosis of cervical cancer, tracking of airborne vehicles, the diffusion of nonlinear optical systems, and the transmission of infectious diseases through a population. His research interests include mathematical physics and mathematical biology. He received the Ph.D. in Applied Mathematics, specializing in nonlinear partial differential equations, from the University of Massachusetts at Amherst.