Preface |
|
xi | |
|
|
1 | (34) |
|
|
1 | (7) |
|
1.2 The connective constant |
|
|
8 | (4) |
|
|
12 | (5) |
|
|
17 | (5) |
|
|
22 | (8) |
|
|
30 | (5) |
|
2 Scaling, polymers and spins |
|
|
35 | (22) |
|
|
35 | (4) |
|
|
39 | (5) |
|
|
44 | (10) |
|
|
54 | (3) |
|
3 Some combinatorial bounds |
|
|
57 | (20) |
|
3.1 The Hammersley-Welsh method |
|
|
57 | (5) |
|
3.2 Self-avoiding polygons |
|
|
62 | (4) |
|
3.3 Kesten's bound on c (N) |
|
|
68 | (7) |
|
|
75 | (2) |
|
4 Decay of the two-point function |
|
|
77 | (42) |
|
4.1 Properties of the mass |
|
|
77 | (12) |
|
4.2 Bridges and renewal theory |
|
|
89 | (11) |
|
4.3 Separation of the masses |
|
|
100 | (7) |
|
4.4 Orstein-Zernike decay of G(z) (0, x) |
|
|
107 | (9) |
|
|
116 | (3) |
|
|
119 | (52) |
|
|
119 | (5) |
|
5.2 Algebraic derivation of the lace expansion |
|
|
124 | (9) |
|
5.3 Example: the memory-two walk |
|
|
133 | (3) |
|
5.4 Bounds on the lace expansion |
|
|
136 | (9) |
|
|
145 | (22) |
|
5.5.1 Lattice trees and animals |
|
|
145 | (10) |
|
|
155 | (12) |
|
|
167 | (4) |
|
|
171 | (58) |
|
6.1 Overview of the results |
|
|
171 | (4) |
|
6.2 Convergence of the lace expansion |
|
|
175 | (13) |
|
|
175 | (2) |
|
6.2.2 The convergence proof |
|
|
177 | (9) |
|
6.2.3 Proof of Theorem 6.1.2 |
|
|
186 | (2) |
|
6.3 Fractional derivatives |
|
|
188 | (5) |
|
6.4 c(n) and the mean-square displacement |
|
|
193 | (7) |
|
6.4.1 Fractional derivatives of the two-point function |
|
|
193 | (5) |
|
6.4.2 Proof of Theorem 6.1.1 |
|
|
198 | (2) |
|
6.5 Correlation length and infrared bound |
|
|
200 | (6) |
|
6.5.1 The correlation length |
|
|
200 | (5) |
|
|
205 | (1) |
|
6.6 Convergence to Brownian motion |
|
|
206 | (9) |
|
6.6.1 The scaling limit of the endpoint |
|
|
208 | (3) |
|
6.6.2 The finite-dimensional distributions |
|
|
211 | (3) |
|
|
214 | (1) |
|
6.7 The infinite self-avoiding walk |
|
|
215 | (14) |
|
6.8 The bound on c(n) (0, x) |
|
|
217 | (10) |
|
|
227 | (2) |
|
|
229 | (28) |
|
|
229 | (4) |
|
7.2 Kesten's Pattern Theorem |
|
|
233 | (9) |
|
7.3 The main ratio limit theorem |
|
|
242 | (7) |
|
|
249 | (6) |
|
|
255 | (2) |
|
8 Polygons, slabs, bridges and knots |
|
|
257 | (24) |
|
8.1 Bounds for the critical exponent a(sing) |
|
|
257 | (10) |
|
8.2 Walks with geometrical constraints |
|
|
267 | (5) |
|
|
272 | (4) |
|
8.4 Knots in self-avoiding polygons |
|
|
276 | (2) |
|
|
278 | (3) |
|
9 Analysis of Monte Carlo methods |
|
|
281 | (84) |
|
9.1 Fundamentals and basic examples |
|
|
281 | (10) |
|
9.2 Statistical considerations |
|
|
291 | (14) |
|
9.2.1 Curve-fitting and linear regression |
|
|
292 | (4) |
|
9.2.2 Autocorrelation times: statistical theory |
|
|
296 | (4) |
|
9.2.3 Autocorrelation times: spectral theory and rigorous bounds |
|
|
300 | (5) |
|
|
305 | (9) |
|
9.3.1 Early methods: strides and biased sampling |
|
|
305 | (3) |
|
|
308 | (3) |
|
|
311 | (3) |
|
9.4 Length-conserving dynamic methods |
|
|
314 | (14) |
|
|
315 | (5) |
|
9.4.2 The "slithering snake" algorithm |
|
|
320 | (2) |
|
9.4.3 The pivot algorithm |
|
|
322 | (6) |
|
9.5 Variable-length dynamic methods |
|
|
328 | (8) |
|
9.5.1 The Berretti-Sokal algorithm |
|
|
328 | (4) |
|
9.5.2 The join-and-cut algorithm |
|
|
332 | (4) |
|
9.6 Fixed-endpoint methods |
|
|
336 | (10) |
|
9.6.1 The BFACF algorithm |
|
|
338 | (5) |
|
|
343 | (3) |
|
|
346 | (16) |
|
9.7.1 Autocorrelation times |
|
|
346 | (2) |
|
|
348 | (2) |
|
9.7.3 The pivot algorithm |
|
|
350 | (6) |
|
9.7.4 Fixed-endpoint methods |
|
|
356 | (6) |
|
|
362 | (3) |
|
|
365 | (10) |
|
10.1 Weak self-avoidance and the Edwards model |
|
|
365 | (3) |
|
10.2 Loop-erased random walk |
|
|
368 | (3) |
|
10.3 Intersections of random walks |
|
|
371 | (2) |
|
10.4 The "myopic" or "true" self-avoiding walk |
|
|
373 | (2) |
A Random walk |
|
375 | (14) |
B Proof of the renewal theorem |
|
389 | (4) |
C Tables of exact enumerations |
|
393 | |
Bibliography |
|
Notation |
|
Index |
|