Atnaujinkite slapukų nuostatas

El. knyga: Self-Avoiding Walk

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A self-avoiding walk is a path on a lattice that does not visit the same site more than once. In spite of this simple definition, many of the most basic questions about this model are difficult to resolve in a mathematically rigorous fashion. In particular, we do not know much about how far an n­ step self-avoiding walk typically travels from its starting point, or even how many such walks there are. These and other important questions about the self-avoiding walk remain unsolved in the rigorous mathematical sense, although the physics and chemistry communities have reached consensus on the answers by a variety of nonrigorous methods, including computer simulations. But there has been progress among mathematicians as well, much of it in the last decade, and the primary goal of this book is to give an account of the current state of the art as far as rigorous results are concerned. A second goal of this book is to discuss some of the applications of the self-avoiding walk in physics and chemistry, and to describe some of the nonrigorous methods used in those fields. The model originated in chem­ istry several decades ago as a model for long-chain polymer molecules. Since then it has become an important model in statistical physics, as it exhibits critical behaviour analogous to that occurring in the Ising model and related systems such as percolation.

Recenzijos

"An excellent introduction for graduate students and professional probabilists... The best place to find a self-contained exposition of lace expansion."



Bulletin of the AMS



"As a carefully written and carefully referenced exposition of an intriguing topic...this monograph is strongly recommended."



Monatshefte Mathematik



"In this book, the reader will find basically everything there is to know about rigorous mathematical results on self-avoiding walks... It is nicely written and should be read by mathematical physicists and probabilists interested in applications to natural sciences."



Belgian Mathematical Society



"This is the first book on self-avoiding random walk and a very good one."



SIAM Review



"An excellent book that should be on the shelf of anyone doing work at the intersection of probability and critical phenomena... The best results about the SAW can still be found here."



--Annals of Probability

Daugiau informacijos

Springer Book Archives
Preface xi
1 Introduction
1(34)
1.1 The basic questions
1(7)
1.2 The connective constant
8(4)
1.3 Generating functions
12(5)
1.4 Critical exponents
17(5)
1.5 The bubble condition
22(8)
1.6 Notes
30(5)
2 Scaling, polymers and spins
35(22)
2.1 Scaling theory
35(4)
2.2 Polymers
39(5)
2.3 The N --> 0 limit
44(10)
2.4 Notes
54(3)
3 Some combinatorial bounds
57(20)
3.1 The Hammersley-Welsh method
57(5)
3.2 Self-avoiding polygons
62(4)
3.3 Kesten's bound on c (N)
68(7)
3.4 Notes
75(2)
4 Decay of the two-point function
77(42)
4.1 Properties of the mass
77(12)
4.2 Bridges and renewal theory
89(11)
4.3 Separation of the masses
100(7)
4.4 Orstein-Zernike decay of G(z) (0, x)
107(9)
4.5 Notes
116(3)
5 The lace expansion
119(52)
5.1 Inclusion-exclusion
119(5)
5.2 Algebraic derivation of the lace expansion
124(9)
5.3 Example: the memory-two walk
133(3)
5.4 Bounds on the lace expansion
136(9)
5.5 Other models
145(22)
5.5.1 Lattice trees and animals
145(10)
5.5.2 Percolation
155(12)
5.6 Notes
167(4)
6 Above four dimensions
171(58)
6.1 Overview of the results
171(4)
6.2 Convergence of the lace expansion
175(13)
6.2.1 Preliminaries
175(2)
6.2.2 The convergence proof
177(9)
6.2.3 Proof of Theorem 6.1.2
186(2)
6.3 Fractional derivatives
188(5)
6.4 c(n) and the mean-square displacement
193(7)
6.4.1 Fractional derivatives of the two-point function
193(5)
6.4.2 Proof of Theorem 6.1.1
198(2)
6.5 Correlation length and infrared bound
200(6)
6.5.1 The correlation length
200(5)
6.5.2 The infrared bound
205(1)
6.6 Convergence to Brownian motion
206(9)
6.6.1 The scaling limit of the endpoint
208(3)
6.6.2 The finite-dimensional distributions
211(3)
6.6.3 Tightness
214(1)
6.7 The infinite self-avoiding walk
215(14)
6.8 The bound on c(n) (0, x)
217(10)
6.9 Notes
227(2)
7 Pattern theorems
229(28)
7.1 Patterns
229(4)
7.2 Kesten's Pattern Theorem
233(9)
7.3 The main ratio limit theorem
242(7)
7.4 End patterns
249(6)
7.5 Notes
255(2)
8 Polygons, slabs, bridges and knots
257(24)
8.1 Bounds for the critical exponent a(sing)
257(10)
8.2 Walks with geometrical constraints
267(5)
8.3 The infinite bridge
272(4)
8.4 Knots in self-avoiding polygons
276(2)
8.5 Notes
278(3)
9 Analysis of Monte Carlo methods
281(84)
9.1 Fundamentals and basic examples
281(10)
9.2 Statistical considerations
291(14)
9.2.1 Curve-fitting and linear regression
292(4)
9.2.2 Autocorrelation times: statistical theory
296(4)
9.2.3 Autocorrelation times: spectral theory and rigorous bounds
300(5)
9.3 Static methods
305(9)
9.3.1 Early methods: strides and biased sampling
305(3)
9.3.2 Dimerization
308(3)
9.3.3 Enrichment
311(3)
9.4 Length-conserving dynamic methods
314(14)
9.4.1 Local algorithms
315(5)
9.4.2 The "slithering snake" algorithm
320(2)
9.4.3 The pivot algorithm
322(6)
9.5 Variable-length dynamic methods
328(8)
9.5.1 The Berretti-Sokal algorithm
328(4)
9.5.2 The join-and-cut algorithm
332(4)
9.6 Fixed-endpoint methods
336(10)
9.6.1 The BFACF algorithm
338(5)
9.6.2 Nonlocal methods
343(3)
9.7 Proofs
346(16)
9.7.1 Autocorrelation times
346(2)
9.7.2 Local algorithms
348(2)
9.7.3 The pivot algorithm
350(6)
9.7.4 Fixed-endpoint methods
356(6)
9.8 Notes
362(3)
10 Related topics
365(10)
10.1 Weak self-avoidance and the Edwards model
365(3)
10.2 Loop-erased random walk
368(3)
10.3 Intersections of random walks
371(2)
10.4 The "myopic" or "true" self-avoiding walk
373(2)
A Random walk 375(14)
B Proof of the renewal theorem 389(4)
C Tables of exact enumerations 393
Bibliography
Notation
Index