Atnaujinkite slapukų nuostatas

El. knyga: Semi-Riemannian Geometry: The Mathematical Language of General Relativity

(University of Alberta, Canada)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 13-Aug-2019
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119517559
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 13-Aug-2019
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119517559
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

An introduction to semi-Riemannian geometry as a foundation for general relativity

Semi-Riemannian Geometry: The Mathematical Language of General Relativity is an accessible exposition of the mathematics underlying general relativity. The book begins with background on linear and multilinear algebra, general topology, and real analysis. This is followed by material on the classical theory of curves and surfaces, expanded to include both the Lorentz and Euclidean signatures. The remainder of the book is devoted to a discussion of smooth manifolds, smooth manifolds with boundary, smooth manifolds with a connection, semi-Riemannian manifolds, and differential operators, culminating in applications to Maxwell’s equations and the Einstein tensor. Many worked examples and detailed diagrams are provided to aid understanding. This book will appeal especially to physics students wishing to learn more differential geometry than is usually provided in texts on general relativity.

STEPHEN C. NEWMAN is Professor Emeritus at the University of Alberta, Edmonton, Alberta, Canada. He is the author of Biostatistical Methods in Epidemiology and A Classical Introduction to Galois Theory, both published by Wiley.

I Preliminaries 1(222)
1 Vector Spaces
5(18)
1.1 Vector Spaces
5(12)
1.2 Dual Spaces
17(2)
1.3 Pullback of Covectors
19(1)
1.4 Annihilators
20(3)
2 Matrices and Determinants
23(22)
2.1 Matrices
23(4)
2.2 Matrix Representations
27(5)
2.3 Rank of Matrices
32(1)
2.4 Determinant of Matrices
33(10)
2.5 Trace and Determinant of Linear Maps
43(2)
3 Bilinear Functions
45(12)
3.1 Bilinear Functions
45(4)
3.2 Symmetric Bilinear Functions
49(2)
3.3 Flat Maps and Sharp Maps
51(6)
4 Scalar Product Spaces
57(40)
4.1 Scalar Product Spaces
57(5)
4.2 Orthonormal Bases
62(3)
4.3 Adjoints
65(3)
4.4 Linear Isometries
68(4)
4.5 Dual Scalar Product Spaces
72(3)
4.6 Inner Product Spaces
75(6)
4.7 Eigenvalues and Eigenvectors
81(3)
4.8 Lorentz Vector Spaces
84(7)
4.9 Time Cones
91(6)
5 Tensors on Vector Spaces
97(16)
5.1 Tensors
97(6)
5.2 Pullback of Covariant Tensors
103(1)
5.3 Representation of Tensors
104(2)
5.4 Contraction of Tensors
106(7)
6 Tensors on Scalar Product Spaces
113(20)
6.1 Contraction of Tensors
113(1)
6.2 Flat Maps
114(5)
6.3 Sharp Maps
119(4)
6.4 Representation of Tensors
123(4)
6.5 Metric Contraction of Tensors
127(2)
6.6 Symmetries of (0, 4)-Tensors
129(4)
7 Multicovectors
133(22)
7.1 Multicovectors
133(4)
7.2 Wedge Products
137(7)
7.3 Pullback of Multicovectors
144(4)
7.4 Interior Multiplication
148(2)
7.5 Multicovector Scalar Product Spaces
150(5)
8 Orientation
155(28)
8.1 Orientation of Rm
155(3)
8.2 Orientation of Vector Spaces
158(5)
8.3 Orientation of Scalar Product Spaces
163(3)
8.4 Vector Products
166(12)
8.5 Hodge Star
178(5)
9 Topology
183(16)
9.1 Topology
183(10)
9.2 Metric Spaces
193(2)
9.3 Normed Vector Spaces
195(1)
9.4 Euclidean Topology on Rm
195(4)
10 Analysis in Rm
199(24)
10.1 Derivatives
199(8)
10.2 Immersions and Diffeomorphisms
207(2)
10.3 Euclidean Derivative and Vector Fields
209(4)
10.4 Lie Bracket
213(5)
10.5 Integrals
218(3)
10.6 Vector Calculus
221(2)
II Curves and Regular Surfaces 223(110)
11 Curves and Regular Surfaces in R3
225(30)
11.1 Curves in R3
225(1)
11.2 Regular Surfaces in R3
226(11)
11.3 Tangent Planes in R3
237(3)
11.4 Types of Regular Surfaces in R3
240(6)
11.5 Functions on Regular Surfaces in R3
246(2)
11.6 Maps on Regular Surfaces in R3
248(4)
11.7 Vector Fields along Regular Surfaces in R3
252(3)
12 Curves and Regular Surfaces in R3v
255(66)
12.1 Curves in R3v
256(1)
12.2 Regular Surfaces in R3v
257(9)
12.3 Induced Euclidean Derivative in R3v
266(8)
12.4 Covariant Derivative on Regular Surfaces in R3v
274(8)
12.5 Covariant Derivative on Curves in R3v
282(3)
12.6 Lie Bracket in R3v
285(3)
12.7 Orientation in R3v
288(4)
12.8 Gauss Curvature in R3v
292(7)
12.9 Riemann Curvature Tensor in R3v
299(11)
12.10 Computations for Regular Surfaces in R3v
310(11)
13 Examples of Regular Surfaces
321(12)
13.1 Plane in 30
321(1)
13.2 Cylinder in R3
322(1)
13.3 Cone in R30
323(1)
13.4 Sphere in R30
324(1)
13.5 Tractoid in R30
325(1)
13.6 Hyperboloid of One Sheet in R30
326(1)
13.7 Hyperboloid of Two Sheets in R30
327(2)
13.8 Torus in R30
329(1)
13.9 Pseudosphere in R31
330(1)
13.10 Hyperbolic Space in R31
331(2)
III Smooth Manifolds and Semi-Riemannian Manifolds 333(276)
14 Smooth Manifolds
337(30)
14.1 Smooth Manifolds
337(3)
14.2 Functions and Maps
340(4)
14.3 Tangent Spaces
344(7)
14.4 Differential of Maps
351(2)
14.5 Differential of Functions
353(4)
14.6 Immersions and Diffeomorphisms
357(1)
14.7 Curves
358(2)
14.8 Submanifolds
360(4)
14.9 Parametrized Surfaces
364(3)
15 Fields on Smooth Manifolds
367(40)
15.1 Vector Fields
367(5)
15.2 Representation of Vector Fields
372(2)
15.3 Lie Bracket
374(2)
15.4 Covector Fields
376(3)
15.5 Representation of Covector Fields
379(3)
15.6 Tensor Fields
382(3)
15.7 Representation of Tensor Fields
385(2)
15.8 Differential Forms
387(2)
15.9 Pushforward and Pullback of Functions
389(2)
15.10 Pushforward and Pullback of Vector Fields
391(2)
15.11 Pullback of Covector Fields
393(5)
15.12 Pullback of Covariant Tensor Fields
398(3)
15.13 Pullback of Differential Forms
401(4)
15.14 Contraction of Tensor Fields
405(2)
16 Differentiation and Integration on Smooth Manifolds
407(42)
16.1 Exterior Derivatives
407(6)
16.2 Tensor Derivations
413(4)
16.3 Form Derivations
417(2)
16.4 Lie Derivative
419(4)
16.5 Interior Multiplication
423(2)
16.6 Orientation
425(7)
16.7 Integration of Differential Forms
432(3)
16.8 Line Integrals
435(2)
16.9 Closed and Exact Covector Fields
437(6)
16.10 Flows
443(6)
17 Smooth Manifolds with Boundary
449(14)
17.1 Smooth Manifolds with Boundary
449(3)
17.2 Inward-Pointing and Outward-Pointing Vectors
452(4)
17.3 Orientation of Boundaries
456(3)
17.4 Stokes's Theorem
459(4)
18 Smooth Manifolds with a Connection
463(52)
18.1 Covariant Derivatives
463(3)
18.2 Christoffel Symbols
466(6)
18.3 Covariant Derivative on Curves
472(4)
18.4 Total Covariant Derivatives
476(3)
18.5 Parallel Translation
479(6)
18.6 Torsion Tensors
485(3)
18.7 Curvature Tensors
488(9)
18.8 Geodesics
497(5)
18.9 Radial Geodesics and Exponential Maps
502(5)
18.10 Normal Coordinates
507(2)
18.11 Jacobi Fields
509(6)
19 Semi-Riemannian Manifolds
515(46)
19.1 Semi-Riemannian Manifolds
515(4)
19.2 Curves
519(1)
19.3 Fundamental Theorem of Semi-Riemannian Manifolds
519(7)
19.4 Flat Maps and Sharp Maps
526(3)
19.5 Representation of Tensor Fields
529(3)
19.6 Contraction of Tensor Fields
532(3)
19.7 Isometries
535(4)
19.8 Riemann Curvature Tensor
539(7)
19.9 Geodesics
546(4)
19.10 Volume Forms
550(1)
19.11 Orientation of Hypersurfaces
551(7)
19.12 Induced Connections
558(3)
20 Differential Operators on Semi-Riemannian Manifolds
561(18)
20.1 Hodge Star
561(1)
20.2 Codifferential
562(4)
20.3 Gradient
566(2)
20.4 Divergence of Vector Fields
568(4)
20.5 Curl
572(1)
20.6 Hesse Operator
573(2)
20.7 Laplace Operator
575(1)
20.8 Laplace-de Rham Operator
576(1)
20.9 Divergence of Symmetric 2-Covariant Tensor Fields
577(2)
21 Riemannian Manifolds
579(8)
21.1 Geodesics and Curvature on Riemannian Manifolds
579(3)
21.2 Classical Vector Calculus Theorems
582(5)
22 Applications to Physics
587(22)
22.1 Linear Isometries on Lorentz Vector Spaces
587(11)
22.2 Maxwell's Equations
598(5)
22.3 Einstein Tensor
603(6)
IV Appendices 609(18)
A Notation and Set Theory
611(6)
B Abstract Algebra
617(10)
B.1 Groups
617(1)
B.2 Permutation Groups
618(5)
B.3 Rings
623(1)
B.4 Fields
623(1)
B.5 Modules
624(1)
B.6 Vector Spaces
625(1)
B.7 Lie Algebras
626(1)
Further Reading 627(2)
Index 629
STEPHEN C. NEWMAN is Professor Emeritus at the University of Alberta, Edmonton, Alberta, Canada. He is the author of Biostatistical Methods in Epidemiology and A Classical Introduction to Galois Theory, both published by Wiley.