Atnaujinkite slapukų nuostatas

El. knyga: Semi-Supervised Learning: Background, Applications and Future Directions

Edited by , Edited by
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Semi-supervised learning is an important area of machine learning. It deals with problems that involve a lot of unlabeled data and very scarce labeled data. The book focuses on some state-of-the-art research on semi-supervised learning. In the first chapter, Weng, Dornaika and Jin introduce a graph construction algorithm named the constrained data self-representative graph construction (CSRGC). In the second chapter, to reduce the graph construction complexity, Zhang et al. use anchors that were a special subset chosen from the original data to construct the full graph, while randomness was injected into graphs to improve the classification accuracy and deal with the high dimensionality issue. In the third chapter, Dornaika et al. introduces a kernel version of the Flexible Manifold Embedding (KFME) algorithm. In the fourth chapter, Zhang et al. present an efficient and robust graph-based transductive classification method known as the minimum tree cut (MTC), for large scale applications. In the fifth chapter, Salazar, Safont and Vergara investigated the performance of semi-supervised learning methods in two-class classification problems with a scarce population of one of the classes. In the sixth chapter, by breaking the sample identically and independently distributed (i.i.d.) assumption, one novel framework called the field support vector machine (F-SVM) with both classification (F-SVC) and regression (F-SVR) purposes is introduced. In the seventh chapter, Gong employs the curriculum learning methodology by investigating the difficulty of classifying every unlabeled example. As a result, an optimized classification sequence was generated during the iterative propagations, and the unlabeled examples are logically classified from simple to difficult. In the eighth chapter, Tang combines semi-supervised learning with geo-tagged photo streams and concept detection to explore situation recognition. This book is suitable for university students (undergraduate or graduate) in computer science, statistics, electrical engineering, or anyone else who would potentially use machine learning algorithms; professors, who research artificial intelligence, pattern recognition, machine learning, data mining and related fields; and engineers, who apply machine learning models into their products.
Preface vii
Chapter 1 Constrained Data Self-Representative Graph Construction
1(20)
L. Weng
F. Dornaika
Z. Jin
Chapter 2 Injecting Randomness into Graphs: An Ensemble Semi-Supervised Learning Framework
21(24)
Qin Zhang
Jianyuan Sun
Guoqiang Zhong
Junyu Dong
Feng Gao
Huizhen Yang
Hina Saeeda
Chapter 3 Label Propagation via Kernel Flexible Manifold Embedding
45(22)
F. Dornaika
Y. El Traboulsi
I. Arganda-Carreras
Chapter 4 Fast Graph-Based Semi-Supervised Learning and Its Applications
67(32)
Yan-Ming Zhang
Kaizhu Huang
Guang-Gang Geng
Cheng-Lin Liu
Chapter 5 Semi-Supervised Learning in Two-Class Classification with a Scarce Population Class
99(24)
Addisson Salazar
Gonzalo Safont
Luis Vergara
Chapter 6 Self-Training Field Pattern Prediction Based on Kernel Methods
123(48)
Haochuan Jiang
Kaizhu Huang
Xu-Yao Zhang
Rui Zhang
Chapter 7 Semi-Supervised Learning via Multi-Modal Curriculum Generation
171(36)
Chen Gong
Chapter 8 Semi-Supervised Learning on Big Multimedia Data for Situation Recognition
207(16)
Mengfan Tang
About the Editors 223(2)
Index 225