Atnaujinkite slapukų nuostatas

El. knyga: Semiconductor Optical Amplifiers 2nd edition [World Scientific e-book]

(Indiana Univ, Usa), (Univ Of Connecticut, Usa)
  • Formatas: 452 pages
  • Išleidimo metai: 30-Aug-2013
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814489041
Kitos knygos pagal šią temą:
  • World Scientific e-book
  • Kaina: 112,73 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formatas: 452 pages
  • Išleidimo metai: 30-Aug-2013
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814489041
Kitos knygos pagal šią temą:
This invaluable book provides a comprehensive treatment of design and applications of semiconductor optical amplifiers (SOA). SOA is an important component for optical communication systems. It has applications as in-line amplifiers and as functional devices in evolving optical networks. The functional applications of SOAs were first studied in the early 1990's, since then the diversity and scope of such applications have been steadily growing. This is the second edition of a book on Semiconductor Optical Amplifiers first published in 2006 by the same authors. Several chapters and sections representing new developments in the chapters of the first edition have been added. The new chapters cover quantum dot semiconductor optical amplifiers (QD-SOA), reflective semiconductor optical amplifiers (RSOA) for passive optical network applications, two-photon absorption in amplifiers, and, applications of SOA as broadband sources. They represent advances in research, technology and commercial trends in the area of semiconductor optical amplifiers.Semiconductor Optical Amplifier is self-contained and unified in presentation. It can be used as an advanced text by graduate students and by practicing engineers. It is also suitable for non-experts who wish to have an overview of optical amplifiers. The treatments in the book are detailed enough to capture the interest of the curious reader and complete enough to provide the necessary background to explore the subject further.
Preface v
1 Introduction 1(14)
1.1 Historical Developments
1(1)
1.2 Semiconductor Materials
2(4)
1.3 Operating Principles
6(3)
1.4 Applications
9(1)
1.5 Book Overview
10(2)
1.6 Future Challenges
12(1)
References
13(2)
2 Basic Concepts 15(22)
2.1 Introduction
15(1)
2.2 Optical Gain
16(3)
2.2.1 Gain spectrum and bandwidth
16(2)
2.2.2 Gain saturation
18(1)
2.3 Dielectric Waveguide
19(3)
2.4 Condition for Amplification
22(2)
2.5 P-N Junction
24(3)
2.6 Amplifier Characteristics
27(3)
2.7 Multiquantum Well Amplifiers
30(5)
References
35(2)
3 Recombination Mechanisms and Gain 37(48)
3.1 Introduction
37(1)
3.2 Radiative Recombination
38(8)
3.2.1 Condition for gain
39(1)
3.2.2 Gain calculation
40(2)
3.2.3 Spontaneous emission rate
42(4)
3.3 Non-radiative Recombination
46(15)
3.3.1 Auger effect
47(9)
3.3.2 Surface recombination
56(1)
3.3.3 Recombination at defects
56(1)
3.3.4 Carrier leakage over the heterobarrier
57(4)
3.4 Quantum Well Amplifiers
61(13)
3.4.1 Energy levels
62(3)
3.4.2 Optical gain and Auger recombination
65(9)
3.4.3 Strained quantum well amplifiers
74(1)
3.5 Gain in Quantum Wire (QWR) and Quantum Dot (QD) Structures
74(7)
References
81(4)
4 Epitaxial Growth and Amplifier Designs 85(32)
4.1 Introduction
85(1)
4.2 Material Systems
86(2)
4.3 Epitaxial Growth Methods
88(7)
4.3.1 Liquid phase epitaxy
88(2)
4.3.2 Vapor phase epitaxy
90(1)
4.3.3 Metal organic chemical vapor deposition
91(1)
4.3.4 Molecular beam epitaxy
92(2)
4.3.5 Chemical beam epitaxy
94(1)
4.4 Strained Layer Epitaxy
95(1)
4.5 Selective Area Growth
96(4)
4.5.1 Model of SAG
99(1)
4.5.2 Materials growth using SAG
99(1)
4.6 Amplifier Designs
100(7)
4.6.1 Leakage current
105(2)
4.7 Growth of QWR and QD Materials
107(4)
References
111(6)
5 Low Reflectivity Facet Designs 117(18)
5.1 Introduction
117(3)
5.2 Low Reflectivity Coatings
120(1)
5.3 Buried Facet Amplifiers
121(5)
5.4 Tilted Facet Amplifiers
126(2)
5.5 Amplified Spontaneous Emission and Optical Gain
128(5)
References
133(2)
6 Amplifier Rate Equations and Operating Characteristics 135(52)
6.1 Introduction
135(1)
6.2 Amplifier Rate Equations for Pulse Propagation
136(3)
6.3 Pulse Amplification
139(5)
6.4 Multichannel Amplification
144(2)
6.5 Amplifier Application in Optical Transmission Systems
146(9)
6.5.1 In-line amplifiers
148(4)
6.5.2 Optical pre-amplifier
152(2)
6.5.3 Power amplifier
154(1)
6.6 Amplifier Noise
155(9)
6.6.1 Noise analysis for optical transmission
157(7)
6.7 Gain Dynamics
164(11)
6.7.1 Model of gain recovery
169(6)
6.8 SOA with Carrier Reservoir
175(7)
References
182(5)
7 Photonic Integrated Circuit Using Amplifiers 187(12)
7.1 Introduction
187(1)
7.2 Integrated Laser and Amplifier
188(3)
7.3 Multichannel WDM Sources with Amplifiers
191(1)
7.4 Spot Size Conversion (SSC)
192(1)
7.5 Mach-Zehnder Interferometer
193(3)
7.6 Photoreceiver
196(1)
References
197(2)
8 Functional Properties and Applications 199(44)
8.1 Introduction
199(1)
8.2 Four-Wave Mixing
199(16)
8.2.1 CW FWM results
200(6)
8.2.1.1 FWM analysis
202(4)
8.2.2 Pulsed FWM results
206(5)
8.2.3 FWM bandwidth
211(4)
8.3 Cross Gain Modulation
215(6)
8.3.1 Rate equations for multiple pulse propagation
216(1)
8.3.2 Bandwidth of cross gain modulation
217(4)
8.4 Cross Phase Modulation
221(2)
8.4.1 Mach-Zehnder interferometer
221(2)
8.5 Wavelength Conversion
223(5)
8.6 Optical Demultiplexing
228(4)
8.6.1 FWM based scheme
228(1)
8.6.2 Cross phase modulation based scheme
229(3)
8.7 OTDM System Applications
232(6)
8.7.1 Clock recovery
232(2)
8.7.2 OTDM transmission
234(1)
8.7.3 Gain-transparent SOA-Switch
235(3)
References
238(5)
9 Optical Logic Operations 243(54)
9.1 Introduction
243(1)
9.2 Optical Logic XOR
244(22)
9.2.1 XOR using SOA-MZI
245(13)
9.2.1.1 Simulation
251(7)
9.2.2 XOR using semiconductor optical amplifier-assisted fiber Sagnac gate
258(2)
9.2.3 XOR using terahertz optical asymmetric demultiplexer (TOAD)
260(3)
9.2.4 XOR using UNI gate
263(1)
9.2.5 XOR optical gate based on cross-polarization modulation in SOA
264(1)
9.2.6 XOR using FWM in semiconductor optical amplifier with return-to-zero phase-shift-keying (RZ-DPSK) modulated input
265(1)
9.3 Optical Logic OR
266(10)
9.3.1 OR gate using gain saturation in an SOA
266(2)
9.3.2 OR gate using a SOA and delayed interferometer (DI)
268(8)
9.3.2.1 Experiment
271(1)
9.3.2.2 Simulation
271(5)
9.4 Optical Logic AND
276(4)
9.4.1 Optical logic AND gate using a SOA based Mach-Zehnder interferometer
276(8)
9.4.1.1 Experiment
277(1)
9.4.1.2 Simulation
278(2)
9.5 Optical Logic INVERT
280(4)
9.6 Effect of Amplifier Noise
284(6)
9.6.1 XOR operation
286(2)
9.6.2 AND operation
288(1)
9.6.3 OR operation
289(1)
9.6.4 NAND operation
289(1)
9.7 Optical Logic Using PSK Signals
290(3)
References
293(4)
10 Optical Logic Circuits 297(26)
10.1 Introduction
297(1)
10.2 Adder
297(4)
10.3 Parity Checker
301(9)
10.4 All-optical Pseudo-Random Binary Sequence (PRBS) Generator
310(3)
10.5 All-Optical Header Processor
313(7)
10.5.1 Multi-output based on two pulse correlation principle
314(2)
10.5.2 All-optical packet header processor based on cascaded SOA-MZIs
316(1)
10.5.3 Ultrafast asynchronous multi-output all-optical header processor
316(4)
References
320(3)
11 Quantum Dot Amplifiers 323(46)
11.1 Introduction
323(1)
11.2 Quantum Dot Materials Growth
324(3)
11.3 Quantum Dot Amplifier Performance
327(2)
11.4 Gain Dynamics
329(11)
11.4.1 Gain dynamics - one state model
330(4)
11.4.2 Gain dynamics - two state model
334(4)
11.4.3 Gain recovery results
338(2)
11.5 Functional Performance
340(13)
11.5.1 Amplification
341(3)
11.5.2 Cross gain modulation and wavelength conversion
344(4)
11.5.3 Four-wave mixing
348(5)
11.6 Optical Logic Performance
353(12)
11.6.1 XOR, OR, AND optical logic operations
357(5)
11.6.2 PRBS generator
362(3)
References
365(4)
12 Reflective Semiconductor Optical Amplifiers (RSOA) 369(18)
12.1 Introduction
369(1)
12.2 RSOA Performance
370(3)
12.3 Pulse Propagation Model and Gain Dynamics
373(3)
12.4 RSOA Based Transmitter - Concept
376(5)
12.5 Optical Transmission Applications
381(3)
References
384(3)
13 Two-Photon Absorption in Amplifiers 387(24)
13.1 Introduction
387(1)
13.2 Two-Photon Absorption in Semiconductors
387(5)
13.3 Phase Dynamics and Other TPA Studies
392(7)
13.3.1 Optical sampling
395(1)
13.3.2 Clock recovery
395(2)
13.3.3 Two-photon gain (TPG)
397(2)
13.3.4 TPA in QD-SOA
399(1)
13.4 Optical Logic Performance
399(9)
13.4.1 Boolean logic (XOR, AND, NAND) operations
402(4)
13.4.2 PRBS generation
406(2)
References
408(3)
14 Semiconductor Optical Amplifiers as Broadband Sources 411(16)
14.1 Introduction
411(1)
14.2 High Power Broadband SOA Type Source
411(6)
14.3 Wavelength Division Multiplexing (WDM) Applications
417(3)
14.4 Optical Coherence Tomography Source
420(2)
14.5 Sensor Applications
422(3)
References
425(2)
Index 427