Preface |
|
v | |
1 Introduction |
|
1 | (14) |
|
1.1 Historical Developments |
|
|
1 | (1) |
|
1.2 Semiconductor Materials |
|
|
2 | (4) |
|
|
6 | (3) |
|
|
9 | (1) |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (2) |
2 Basic Concepts |
|
15 | (22) |
|
|
15 | (1) |
|
|
16 | (3) |
|
2.2.1 Gain spectrum and bandwidth |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (3) |
|
2.4 Condition for Amplification |
|
|
22 | (2) |
|
|
24 | (3) |
|
2.6 Amplifier Characteristics |
|
|
27 | (3) |
|
2.7 Multiquantum Well Amplifiers |
|
|
30 | (5) |
|
|
35 | (2) |
3 Recombination Mechanisms and Gain |
|
37 | (48) |
|
|
37 | (1) |
|
3.2 Radiative Recombination |
|
|
38 | (8) |
|
|
39 | (1) |
|
|
40 | (2) |
|
3.2.3 Spontaneous emission rate |
|
|
42 | (4) |
|
3.3 Non-radiative Recombination |
|
|
46 | (15) |
|
|
47 | (9) |
|
3.3.2 Surface recombination |
|
|
56 | (1) |
|
3.3.3 Recombination at defects |
|
|
56 | (1) |
|
3.3.4 Carrier leakage over the heterobarrier |
|
|
57 | (4) |
|
3.4 Quantum Well Amplifiers |
|
|
61 | (13) |
|
|
62 | (3) |
|
3.4.2 Optical gain and Auger recombination |
|
|
65 | (9) |
|
3.4.3 Strained quantum well amplifiers |
|
|
74 | (1) |
|
3.5 Gain in Quantum Wire (QWR) and Quantum Dot (QD) Structures |
|
|
74 | (7) |
|
|
81 | (4) |
4 Epitaxial Growth and Amplifier Designs |
|
85 | (32) |
|
|
85 | (1) |
|
|
86 | (2) |
|
4.3 Epitaxial Growth Methods |
|
|
88 | (7) |
|
4.3.1 Liquid phase epitaxy |
|
|
88 | (2) |
|
4.3.2 Vapor phase epitaxy |
|
|
90 | (1) |
|
4.3.3 Metal organic chemical vapor deposition |
|
|
91 | (1) |
|
4.3.4 Molecular beam epitaxy |
|
|
92 | (2) |
|
4.3.5 Chemical beam epitaxy |
|
|
94 | (1) |
|
4.4 Strained Layer Epitaxy |
|
|
95 | (1) |
|
4.5 Selective Area Growth |
|
|
96 | (4) |
|
|
99 | (1) |
|
4.5.2 Materials growth using SAG |
|
|
99 | (1) |
|
|
100 | (7) |
|
|
105 | (2) |
|
4.7 Growth of QWR and QD Materials |
|
|
107 | (4) |
|
|
111 | (6) |
5 Low Reflectivity Facet Designs |
|
117 | (18) |
|
|
117 | (3) |
|
5.2 Low Reflectivity Coatings |
|
|
120 | (1) |
|
5.3 Buried Facet Amplifiers |
|
|
121 | (5) |
|
5.4 Tilted Facet Amplifiers |
|
|
126 | (2) |
|
5.5 Amplified Spontaneous Emission and Optical Gain |
|
|
128 | (5) |
|
|
133 | (2) |
6 Amplifier Rate Equations and Operating Characteristics |
|
135 | (52) |
|
|
135 | (1) |
|
6.2 Amplifier Rate Equations for Pulse Propagation |
|
|
136 | (3) |
|
|
139 | (5) |
|
6.4 Multichannel Amplification |
|
|
144 | (2) |
|
6.5 Amplifier Application in Optical Transmission Systems |
|
|
146 | (9) |
|
|
148 | (4) |
|
6.5.2 Optical pre-amplifier |
|
|
152 | (2) |
|
|
154 | (1) |
|
|
155 | (9) |
|
6.6.1 Noise analysis for optical transmission |
|
|
157 | (7) |
|
|
164 | (11) |
|
6.7.1 Model of gain recovery |
|
|
169 | (6) |
|
6.8 SOA with Carrier Reservoir |
|
|
175 | (7) |
|
|
182 | (5) |
7 Photonic Integrated Circuit Using Amplifiers |
|
187 | (12) |
|
|
187 | (1) |
|
7.2 Integrated Laser and Amplifier |
|
|
188 | (3) |
|
7.3 Multichannel WDM Sources with Amplifiers |
|
|
191 | (1) |
|
7.4 Spot Size Conversion (SSC) |
|
|
192 | (1) |
|
7.5 Mach-Zehnder Interferometer |
|
|
193 | (3) |
|
|
196 | (1) |
|
|
197 | (2) |
8 Functional Properties and Applications |
|
199 | (44) |
|
|
199 | (1) |
|
|
199 | (16) |
|
|
200 | (6) |
|
|
202 | (4) |
|
|
206 | (5) |
|
|
211 | (4) |
|
8.3 Cross Gain Modulation |
|
|
215 | (6) |
|
8.3.1 Rate equations for multiple pulse propagation |
|
|
216 | (1) |
|
8.3.2 Bandwidth of cross gain modulation |
|
|
217 | (4) |
|
8.4 Cross Phase Modulation |
|
|
221 | (2) |
|
8.4.1 Mach-Zehnder interferometer |
|
|
221 | (2) |
|
8.5 Wavelength Conversion |
|
|
223 | (5) |
|
8.6 Optical Demultiplexing |
|
|
228 | (4) |
|
|
228 | (1) |
|
8.6.2 Cross phase modulation based scheme |
|
|
229 | (3) |
|
8.7 OTDM System Applications |
|
|
232 | (6) |
|
|
232 | (2) |
|
|
234 | (1) |
|
8.7.3 Gain-transparent SOA-Switch |
|
|
235 | (3) |
|
|
238 | (5) |
9 Optical Logic Operations |
|
243 | (54) |
|
|
243 | (1) |
|
|
244 | (22) |
|
|
245 | (13) |
|
|
251 | (7) |
|
9.2.2 XOR using semiconductor optical amplifier-assisted fiber Sagnac gate |
|
|
258 | (2) |
|
9.2.3 XOR using terahertz optical asymmetric demultiplexer (TOAD) |
|
|
260 | (3) |
|
|
263 | (1) |
|
9.2.5 XOR optical gate based on cross-polarization modulation in SOA |
|
|
264 | (1) |
|
9.2.6 XOR using FWM in semiconductor optical amplifier with return-to-zero phase-shift-keying (RZ-DPSK) modulated input |
|
|
265 | (1) |
|
|
266 | (10) |
|
9.3.1 OR gate using gain saturation in an SOA |
|
|
266 | (2) |
|
9.3.2 OR gate using a SOA and delayed interferometer (DI) |
|
|
268 | (8) |
|
|
271 | (1) |
|
|
271 | (5) |
|
|
276 | (4) |
|
9.4.1 Optical logic AND gate using a SOA based Mach-Zehnder interferometer |
|
|
276 | (8) |
|
|
277 | (1) |
|
|
278 | (2) |
|
|
280 | (4) |
|
9.6 Effect of Amplifier Noise |
|
|
284 | (6) |
|
|
286 | (2) |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
289 | (1) |
|
9.7 Optical Logic Using PSK Signals |
|
|
290 | (3) |
|
|
293 | (4) |
10 Optical Logic Circuits |
|
297 | (26) |
|
|
297 | (1) |
|
|
297 | (4) |
|
|
301 | (9) |
|
10.4 All-optical Pseudo-Random Binary Sequence (PRBS) Generator |
|
|
310 | (3) |
|
10.5 All-Optical Header Processor |
|
|
313 | (7) |
|
10.5.1 Multi-output based on two pulse correlation principle |
|
|
314 | (2) |
|
10.5.2 All-optical packet header processor based on cascaded SOA-MZIs |
|
|
316 | (1) |
|
10.5.3 Ultrafast asynchronous multi-output all-optical header processor |
|
|
316 | (4) |
|
|
320 | (3) |
11 Quantum Dot Amplifiers |
|
323 | (46) |
|
|
323 | (1) |
|
11.2 Quantum Dot Materials Growth |
|
|
324 | (3) |
|
11.3 Quantum Dot Amplifier Performance |
|
|
327 | (2) |
|
|
329 | (11) |
|
11.4.1 Gain dynamics - one state model |
|
|
330 | (4) |
|
11.4.2 Gain dynamics - two state model |
|
|
334 | (4) |
|
11.4.3 Gain recovery results |
|
|
338 | (2) |
|
11.5 Functional Performance |
|
|
340 | (13) |
|
|
341 | (3) |
|
11.5.2 Cross gain modulation and wavelength conversion |
|
|
344 | (4) |
|
|
348 | (5) |
|
11.6 Optical Logic Performance |
|
|
353 | (12) |
|
11.6.1 XOR, OR, AND optical logic operations |
|
|
357 | (5) |
|
|
362 | (3) |
|
|
365 | (4) |
12 Reflective Semiconductor Optical Amplifiers (RSOA) |
|
369 | (18) |
|
|
369 | (1) |
|
|
370 | (3) |
|
12.3 Pulse Propagation Model and Gain Dynamics |
|
|
373 | (3) |
|
12.4 RSOA Based Transmitter - Concept |
|
|
376 | (5) |
|
12.5 Optical Transmission Applications |
|
|
381 | (3) |
|
|
384 | (3) |
13 Two-Photon Absorption in Amplifiers |
|
387 | (24) |
|
|
387 | (1) |
|
13.2 Two-Photon Absorption in Semiconductors |
|
|
387 | (5) |
|
13.3 Phase Dynamics and Other TPA Studies |
|
|
392 | (7) |
|
|
395 | (1) |
|
|
395 | (2) |
|
13.3.3 Two-photon gain (TPG) |
|
|
397 | (2) |
|
|
399 | (1) |
|
13.4 Optical Logic Performance |
|
|
399 | (9) |
|
13.4.1 Boolean logic (XOR, AND, NAND) operations |
|
|
402 | (4) |
|
|
406 | (2) |
|
|
408 | (3) |
14 Semiconductor Optical Amplifiers as Broadband Sources |
|
411 | (16) |
|
|
411 | (1) |
|
14.2 High Power Broadband SOA Type Source |
|
|
411 | (6) |
|
14.3 Wavelength Division Multiplexing (WDM) Applications |
|
|
417 | (3) |
|
14.4 Optical Coherence Tomography Source |
|
|
420 | (2) |
|
|
422 | (3) |
|
|
425 | (2) |
Index |
|
427 | |