Atnaujinkite slapukų nuostatas

El. knyga: Semiconductor Solar Photocatalysts: Fundamentals and Applications

Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Išleidimo metai: 03-Nov-2021
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527834303
  • Formatas: PDF+DRM
  • Išleidimo metai: 03-Nov-2021
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527834303

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Provides a timely overview of basic principles and significant advances of semiconductor-based photocatalysts for solar energy conversion 

Semiconductor Solar Photocatalysts: Fundamentals and Applications presents a systematic, in-depth summary of both fundamental and cutting-edge research in novel photocatalytic systems. Focusing on photocatalysts with vast potential for efficient utilization of solar energy, this up-to-date volume covers heterojunction systems, graphene-based photocatalysts, organic semiconductor photocatalysts, metal sulfide semiconductor photocatalysts, and graphitic carbon nitride-based photocatalysts. 

Organized into six chapters, the text opens with a detailed introduction to the history, design principles, modification strategies, and performance evaluation methods of solar energy photocatalysis. The remaining chapters provide detailed discussion of various novel photocatalytic systems such as direct Z-scheme and S-scheme photocatalysts, organic polymers, and covalent organic frameworks. This authoritative resource: 

  • Explains the essential concepts of solar energy photocatalysis and heterojunction systems for photocatalysis 
  • Reviews interesting structures and new applications of semiconductor photocatalysts 
  • Features contributions from an international panel of leading researchers in the field 
  • Includes extensive references and numerous tables, figures, and color illustrations  

Semiconductor Solar Photocatalysts: Fundamentals and Applications is valuable resource for all catalytic chemists, materials scientists, inorganic and physical chemists, chemical engineers, and physicists working in the semiconductor industry. 

1 The Fundamentals of Solar Energy Photocatalysis
1(70)
Xin Li
Jiaguo Yu
1.1 Background
1(1)
1.2 History of Solar Energy Photocatalysis
1(10)
1.3 Fundamental Principles of Solar Energy Photocatalysis
11(10)
1.3.1 Basic Mechanisms for Solar Energy Photocatalysis
11(2)
1.3.2 Thermodynamic Requirements for Solar Energy Photocatalysis
13(1)
1.3.3 Dynamics Requirements for Solar Energy Photocatalysis
14(7)
1.4 Design, Development, and Modification of Semiconductor Photocatalysts
21(11)
1.4.1 Design Principles of Semiconductor Photocatalysts
21(4)
1.4.2 Classifications of Semiconductor Photocatalysts
25(1)
1.4.3 Modification Strategies of Semiconductor Photocatalysts
25(4)
1.4.4 Development Approaches of Novel Semiconductor Photocatalysts
29(3)
1.5 Processes and Evaluation of Solar Energy Photocatalysis
32(14)
1.5.1 Processes of Solar Energy Photocatalysis
32(1)
1.5.1.1 Photocatalytic Water Splitting
32(5)
1.5.1.2 Photocatalytic CO2 Reduction
37(4)
1.5.1.3 Photocatalytic Degradation
41(4)
1.5.2 Evaluation of Solar Energy Photocatalysis
45(1)
1.6 The Scope of This Book
46(25)
Acknowledgments
46(1)
References
47(24)
2 Heterojunction Systems for Photocatalysis
71(90)
Jun Ma
Jingxiang Low
Jinfeng Zhang
Jiaguo Yu
2.1 Introduction
71(1)
2.2 Classification of Heterojunction Photocatalysts
72(5)
2.2.1 Type-II Heterojunction Photocatalysts
72(1)
2.2.2 P-N Junction Photocatalysts
73(1)
2.2.3 Surface Junction Photocatalysts
73(2)
2.2.4 Direct Z-scheme Photocatalysts
75(1)
2.2.5 S-scheme Photocatalysts
75(2)
2.3 Evaluation of the Heterojunction Photocatalysts
77(12)
2.3.1 Band Structure
77(1)
2.3.1.1 Light Absorption Ability
77(1)
2.3.1.2 Reduction and Oxidation Ability
78(2)
2.3.1.3 Identification of Major Charge Carriers
80(1)
2.3.2 Charge Carrier Separation Efficiency
81(1)
2.3.2.1 Electrochemical Test
82(1)
2.3.2.2 Optical Spectroscopy
83(2)
2.3.3 Charge Carrier Migration Mechanism
85(1)
2.3.3.1 Metal Loading
85(2)
2.3.3.2 Reactive Oxygen Species Trapping
87(2)
2.3.3.3 In Situ Irradiated XPS
89(1)
2.4 Applications
89(54)
2.4.1 Photocatalytic Water Splitting
89(18)
2.4.2 Photocatalytic CO2 Reduction
107(12)
2.4.3 Photocatalytic N2 Fixation
119(6)
2.4.4 Photocatalytic Environmental Remediation
125(11)
2.4.5 Photocatalytic Disinfection
136(7)
2.5 Summary and Future Perspective
143(18)
References
146(15)
3 Graphene-Based Photocatalysts
161(78)
Panyong Kuang
Jiaguo Yu
Jingxiang Low
3.1 Introduction
161(1)
3.2 Graphene and Its Derivatives
162(9)
3.2.1 Graphene Oxide
163(2)
3.2.2 Reduced Graphene Oxide
165(2)
3.2.3 Graphene Quantum Dot
167(4)
3.3 General Preparation Techniques of Graphene in Photocatalysis
171(5)
3.3.1 Chemical Exfoliation
171(2)
3.3.2 Chemical Vapor Deposition
173(3)
3.4 General Advantages of Graphene
176(4)
3.4.1 Conductor Behavior
176(1)
3.4.2 Photothermal Effect
176(1)
3.4.3 Large Specific Surface Area
177(1)
3.4.4 Enhancing Photostability
178(1)
3.4.5 Improving Nanoparticle Dispersion
179(1)
3.5 Characterization Methods
180(6)
3.5.1 Transmission Electron Microscopy
180(2)
3.5.2 Atomic Force Microscopy
182(1)
3.5.3 Raman Spectroscopy
182(1)
3.5.4 X-ray Photoelectron Spectroscopy
183(3)
3.6 Recent Development in Graphene-Based Photocatalysts
186(38)
3.6.1 Metal Oxide
186(15)
3.6.2 Metal Sulfide
201(11)
3.6.3 Non-metal Semiconductor
212(7)
3.6.4 Metal-Organic Framework
219(5)
3.7 Summary and Concluding Remarks
224(15)
Acknowledgments
225(1)
References
225(14)
4 Metal Sulfide Semiconductor Photocatalysts
239(86)
Yang Xia
Jiaguo Yu
4.1 Introduction
239(2)
4.2 General View of Metal Sulfide Photocatalysts
241(1)
4.3 Synthesis of Metal Sulfide Photocatalysts
241(13)
4.3.1 Solution-Based Methods
241(2)
4.3.1.1 Hydrothermal Method
243(1)
4.3.1.2 Solvothermal Method
244(4)
4.3.2 Chemical Bath Deposition
248(1)
4.3.3 Template Method
249(2)
4.3.4 Ion-Exchange Method
251(2)
4.3.5 Other Synthesis Methods
253(1)
4.4 CdS-Based Photocatalyst
254(18)
4.4.1 Crystal Structures and Morphology
254(2)
4.4.1.1 Zero-Dimensional Structure
256(1)
4.4.1.2 One-Dimensional Structure
257(2)
4.4.1.3 Two-Dimensional Structure
259(1)
4.4.1.4 Three-Dimensional Structure
259(2)
4.4.2 Construction of CdS-Based Nanocomposite Photocatalysts
261(1)
4.4.2.1 CdS-Cocatalyst Heterojunctions
262(2)
4.4.2.2 CdS-Based Type-II Heterojunctions
264(2)
4.4.2.3 CdS-Based Z-scheme Heterojunctions
266(4)
4.4.2.4 CdS-Based S-scheme Heterojunctions
270(2)
4.5 In2S3-Based Photocatalysts
272(12)
4.5.1 Crystal Structure and Electronic Properties
272(1)
4.5.2 Morphology of In2S3 Photocatalysts
273(1)
4.5.2.1 Zero-Dimensional Structure
274(2)
4.5.2.2 One-Dimensional Structure
276(1)
4.5.2.3 Two-Dimensional Structure
276(2)
4.5.2.4 Three-Dimensional Structure
278(2)
4.5.3 Construction of In2S3-Based Composite Photocatalysts
280(1)
4.5.3.1 In2S3-Based Type-II Heterojunctions
280(2)
4.5.3.2 In2S3-Based Direct Z-scheme Heterojunctions
282(1)
4.5.3.3 In2S3-Based Indirect Z-scheme Heterojunctions
282(2)
4.6 SnS2-Based Photocatalysts
284(6)
4.6.1 Morphology of SnS2 Photocatalysts
284(1)
4.6.2 Construction of SnS2-Based Composite Photocatalysts
285(2)
4.6.2.1 Cocatalyst/SnS2 Composites
287(1)
4.6.2.2 SnS2-Based Type-II Heterojunction Composites
287(1)
4.6.2.3 SnS2-Based Z-scheme Heterojunction Composites
288(2)
4.7 Cu2S-Based Photocatalysts
290(10)
4.7.1 Morphology of Cu2S Photocatalysts
291(1)
4.7.1.1 Zero-Dimensional Structure
291(1)
4.7.1.2 One-Dimensional Structure
292(1)
4.7.1.3 Two-Dimensional Structure
293(1)
4.7.1.4 Three-Dimensional Structure
294(2)
4.7.2 Construction of Cu2S-Based Composite Photocatalysts
296(1)
4.7.2.1 Cu2S/Metal Oxide Photocatalysts
296(1)
4.7.2.2 Cu2S/Metal Sulfide Photocatalysts
296(3)
4.7.2.3 Cu2S/Metal Photocatalysts
299(1)
4.8 Other Metal Sulfide Photocatalysts
300(1)
4.9 Energy and Environmental Applications
301(8)
4.9.1 Photocatalytic H2 Production
301(1)
4.9.1.1 Unary Metal Sulfide Photocatalyst for H2 Production
302(1)
4.9.1.2 Binary Metal Sulfide-Based Nanocomposite Photocatalysts for H2 Production
303(1)
4.9.1.3 Ternary Metal Sulfide-Based Nanocomposite Photocatalysts for H2 Production
303(2)
4.9.2 Photoreduction of CO2
305(1)
4.9.3 Photocatalytic Removal of Environmental Contamination
306(1)
4.9.3.1 Photocatalytic Dye Degradation
307(1)
4.9.3.2 Photocatalytic Reduction of Hexavalent Chromium
308(1)
4.10 Conclusions and Outlook
309(16)
References
310(15)
5 Organic Semiconductor Photocatalysts
325(122)
Liuyi Li
Yan Yu
Jiaguo Yu
5.1 Introduction
325(1)
5.2 MOFs Photocatalysts
325(41)
5.2.1 Synthesis of MOFs Photocatalysts
327(2)
5.2.2 MOFs for Photocatalytic Degradation of Pollutants
329(5)
5.2.3 MOFs for Photocatalytic Organic Transformation
334(13)
5.2.4 MOFs for Photocatalytic H2 Production from Water
347(5)
5.2.5 MOFs for Photocatalytic Reduction of CO2
352(14)
5.3 Organic Polymer Photocatalysts
366(30)
5.3.1 Synthesis of Organic Polymer Photocatalysts
367(2)
5.3.2 Organic Polymers for Photocatalytic Degradation of Pollutants
369(3)
5.3.3 Organic Polymers for Organic Transformation
372(10)
5.3.4 Organic Polymers for Photocatalytic H2 Production from Water
382(9)
5.3.5 Organic Polymers for Photocatalytic Reduction of CO2
391(5)
5.4 COFs Photocatalysts
396(40)
5.4.1 Synthesis of COFs Photocatalysts
399(3)
5.4.2 COFs for Photocatalytic Degradation of Pollutants
402(3)
5.4.3 COFs for Photocatalytic Organic Transformation
405(8)
5.4.4 COFs for Photocatalytic H2 Production from Water
413(17)
5.4.5 COFs for Photocatalytic Reduction of CO2
430(6)
5.5 Conclusions and Outlook
436(11)
References
437(10)
6 Graphitic Carbon Nitride-Based Photocatalysts
447(40)
Junwei Fu
Jiaguo Yu
6.1 Introduction
447(1)
6.2 Structure of g-C3N4
448(1)
6.3 Preparation of g-C3N4-Based Photocatalysts
448(5)
6.3.1 Pure g-C3N4
448(4)
6.3.2 g-C3N4-Based Composite Photocatalysts
452(1)
6.4 Main Photocatalytic Applications of g-C3N4-Based Photocatalysts
453(2)
6.4.1 Photocatalytic H2O Splitting for H2 Generation
453(1)
6.4.2 Photocatalytic CO2 Reduction for Hydrocarbon Fuel Production
454(1)
6.4.3 Photocatalytic N2 Fixation for Ammonia Production
455(1)
6.5 Strategies for Optimizing Photocatalytic Performance of g-C3N4
455(20)
6.5.1 Morphology Design
455(2)
6.5.2 Surface Modification
457(1)
6.5.3 Element Doping
458(4)
6.5.4 Cocatalyst Loading
462(5)
6.5.5 Heterojunction
467(7)
6.5.6 Single-Atom Deposition
474(1)
6.6 Challenges and Prospects
475(12)
References
479(8)
Index 487
Professor Jiaguo Yu received his BS and MS degrees in chemistry from Central China Normal University and Xi'an Jiaotong University, respectively, and his PhD degree in materials science in 2000 from Wuhan University of Technology. In 2000, he became a Professor at Wuhan University of Technology. He was a postdoctoral fellow at the Chinese University of Hong Kong from 2001 to 2004, a visiting scientist from 2005 to 2006 at the University of Bristol, and a visiting scholar from 2007 to 2008 at University of Texas at Austin. His current research interests are semiconductor photocatalysis for energy and environmental applications. He has published more than 600 papers in peer-reviewed international journals, and has been on the lists of Thomson Reuters/Clarivate Analytics Highly-Cited Researchers since 2014. He is Member of Academia Europaea (2020), Fellow of the European Academy of Sciences (2020) and Fellow of the Royal Society of Chemistry (2015). He is an Associate Editor of Chinese journal of Catalysis (since 2020) and Editor of Applied Surface Science (2014-2020), and serves on the editorial board of several international journals. Professor Xin Li received his BS and PhD degrees in Chemical Engineering from Zhengzhou University in 2002 and South China University of Technology in 2007, respectively. He joined South China Agricultural University as a faculty staff member, and became an associate professor of Applied Chemistry in 2011. In 2017, he became a Professor at the South China Agricultural University. During 2012-2013, he was a visiting scholar at the Electrochemistry Center, the University of Texas at Austin, USA. His research interests include photocatalysis, photoelectrochemistry, adsorption, and the development of nanomaterials and devices. Dr. Jingxiang Low obtained his B.Eng (Hons) from Multimedia University, Malaysia in 2011 and master/Ph.D. degree from Wuhan University of Technology in 2018. He is currently working at University of Science and Technology of China. His research interests include the design, synthesis and fabrication of photocatalytic materials for energy and environmental applications. He has published more than 35 papers in renowned journals including Chemical Reviews, Advanced Materials, Journal of the American Chemical Society, etc., with total citations over 10,000 times (H-index: 26). He has won CAS President's International Fellowship Initiative, 2017 top 100,000 ranked scientists (PLOS biology) and China?s 100 most influential SCI papers.