Atnaujinkite slapukų nuostatas

El. knyga: Sensing and Monitoring Technologies for Mines and Hazardous Areas: Monitoring and Prediction Technologies

(CSIR-Central Institute of Mining and Fuel Research (CSIR-CIMFR), Dhanbad, India), (Central Institute of Mining and Fuel Research (CSIR-CIMFR), Dhanbad, India)
  • Formatas: PDF+DRM
  • Išleidimo metai: 10-Jun-2016
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128031957
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 10-Jun-2016
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128031957
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

In this book, the authors present the fundamentals of mining related geotechnical risk and how the latest advances in sensing and data communication can be used both to prevent and to provide early warnings in the case of accidents.

Opencast mining operations involve huge quantities of overburden removal, dumping and backfilling in excavated area. Substantial increase in rate of accumulation of waste dumps in recent years resulted in greater height of the dump for minimum ground cover area, and also given rise to the danger of dump failures. Further, steeper open pit slopes are prone to failure. These failures lead to loss of valuable human lives and damage to mining machinery.

For that environment, this book presents the most recent advances in Gas Sensors, Methane Detectors and Power cut-off systems. It also introduces monitoring of the Gas Strata and Environment, and brings an overview of the use of Internet of Things and Cloud Computing for mining sensing and surveillance purposes.

Targeted at Geotechnical and Mining Engineers, this volume brings the latest findings and technology applied to prevent mining accidents and mitigate the inherent risk of the activity.

  • Presents complete details of a real-time slope stability monitoring system using wireless sensor networking and prediction technique based on multivariate statistical analysis of various parameters and analytical hierarchy process method
  • Discusses innovative ideas and new concept of sensing technologies, mine transport surveillance, digital mining, cloud computing etc. to improve safety and productivity in mining industry
  • Includes slope stability prediction software, downloadable through a companion website, which can be used for monitoring, analyzing and storing through different sensors and providing audio-visual, SMS and email alerts

Daugiau informacijos

This authoritative reference presents the fundamentals of mining related geotechnical risk and the latest advances in sensing and data communication for preventing accidents and providing early warnings. Targeted at geotechnical and mining engineers, this volume covers the latest findings and technology to prevent mining accidents and mitigate risk.
Preface xiii
Acknowledgments xix
Abbreviations xxiii
Chapter 1 Slope Failure Mechanism and Monitoring Techniques 1(86)
1.1 Introduction
1(1)
1.2 Slope Failure Modes and Mechanism
2(5)
1.2.1 Dump Slope
2(1)
1.2.2 Open-Pit Slope
2(5)
1.3 Factors Affecting Slope Stability
7(7)
1.3.1 Dump Slope
7(5)
1.3.2 Open-Pit Slope
12(2)
1.4 Methods of Slope Stability Analysis
14(6)
1.4.1 Analysis Methods
14(4)
1.4.2 Interpretation of Stability Analysis Results
18(2)
1.5 Assessment of Risk
20(3)
1.5.1 Risk to Personnel and Equipment
20(1)
1.5.2 Risk to Facilities
21(1)
1.5.3 Risk to Environment
21(2)
1.6 Slope Monitoring Systems
23(10)
1.6.1 Automated Total Station Networks
24(1)
1.6.2 Nonreflective LIDAR Scanner
25(1)
1.6.3 Global Positioning System
26(1)
1.6.4 Time-Domain Reflectometer
26(1)
1.6.5 Digital Aerial Photogrammetry
27(1)
1.6.6 High-Resolution Micro-seismic Monitoring Method
28(1)
1.6.7 Slope Stability Radar
29(3)
1.6.8 Comparison of Various Slope Monitoring Systems
32(1)
1.7 Slope Failure Monitoring and Prediction System
33(23)
1.7.1 System Description
34(1)
1.7.2 System Architecture
35(2)
1.7.3 Specifications
37(1)
1.7.4 System Function
38(5)
1.7.5 Prediction Software
43(13)
1.8 Laboratory Experiment
56(5)
1.9 Field Survey and Geotechnical Assessment
61(12)
1.9.1 Index and Shear Strength Properties of Dump Materials
63(1)
1.9.2 Stability Analysis
63(10)
1.10 Field Installation of Slope Stability Monitoring System
73(4)
1.10.1 Solar System Installation
73(1)
1.10.2 Wireless Node Installation
74(1)
1.10.3 Sensors Installation
74(2)
1.10.4 Base Station Installation
76(1)
1.11 Conclusions
77(1)
References
78(9)
Chapter 2 Mine Transport Surveillance and Production Management System 87(74)
2.1 Introduction
87(1)
2.2 State of the Art
87(14)
2.2.1 Inductive-Loop Detector
87(3)
2.2.2 Video Image Processor
90(1)
2.2.3 IR Sensor
91(3)
2.2.4 Ultrasonic Sensor
94(1)
2.2.5 Passive Acoustic Array Sensor
95(1)
2.2.6 Video Vehicle Surveillance System
96(4)
2.2.7 GPS-Based Vehicle Tracking System
100(1)
2.2.8 Need for Further Development
101(1)
2.3 Mine Transport Surveillance and Production Management System
101(2)
2.3.1 Introduction
101(1)
2.3.2 System Description
102(1)
2.4 Weighing Modules
103(22)
2.4.1 Weighbridge Automation
103(11)
2.4.2 Real-Time Weighing System
114(11)
2.5 Vehicle Tracking and Detection Module
125(14)
2.5.1 Vehicle Tracking System
125(5)
2.5.2 Unauthorized Vehicle Detection
130(9)
2.6 Production Management Module
139(12)
2.6.1 Equipment Optimization System
142(4)
2.6.2 Equipment Tracking System
146(2)
2.6.3 Real-Time Dumper Movement and Dispatch System
148(3)
2.6.4 Mine Asset Monitoring System
151(1)
2.7 Software Specifications
151(7)
2.8 Conclusions
158(1)
References
159(2)
Chapter 3 Gas Sensors for Underground Mines and Hazardous Areas 161(52)
3.1 Introduction
161(1)
3.2 Mine Gases
161(6)
3.2.1 Sources of Gases
161(2)
3.2.2 Category of Mine Gases
163(1)
3.2.3 Properties of Gases
164(3)
3.3 Hazardous Area
167(3)
3.3.1 Combustible Gas Hazards
168(1)
3.3.2 Toxic Gas Hazards
168(2)
3.4 Gas Sensors
170(28)
3.4.1 Catalytic Bead Sensors
170(4)
3.4.2 Infrared Gas Sensor
174(5)
3.4.3 Electrochemical Sensors
179(2)
3.4.4 Semiconductor Sensor
181(3)
3.4.5 Laser Sensor
184(3)
3.4.6 Fiber Optic Sensor
187(3)
3.4.7 Thermal Conductivity Sensor
190(1)
3.4.8 Flame Ionization Detector
191(1)
3.4.9 Photoionization Detector
192(1)
3.4.10 Paper Tape Technology
193(1)
3.4.11 Microelectromechanical System
193(2)
3.4.12 Nanotechnology
195(3)
3.5 Characteristics of Gas Sensors
198(1)
3.6 Comparison of Various Sensors
198(3)
3.6.1 Comparison Between Catalytic Bead Sensor and IR Gas Sensor
200(1)
3.6.2 Comparison Between Electrochemical and Semiconductor Sensors
200(1)
3.6.3 Comparison Between PID and FID
201(1)
3.7 Mine Gas Monitoring Techniques
201(2)
3.7.1 Portable Gas Monitoring Device
201(1)
3.7.2 Real-Time Gas Monitoring Systems
202(1)
3.7.3 Tube Bundle System
202(1)
3.7.4 Gas Chromatography
203(1)
3.8 Sampling Methods
203(1)
3.8.1 Diffusion Sampling
203(1)
3.8.2 Pumped Sampling
204(1)
3.8.3 Aspirated Sampling
204(1)
3.9 Placement of Sensor
204(1)
3.9.1 Combustible Gas Sensors
205(1)
3.9.2 Toxic and Oxygen Gas Sensors
205(1)
3.10 Interpretation of the Data
205(1)
3.11 Sensor Calibration
206(2)
3.11.1 Bump Check
207(1)
3.11.2 Full Calibration
207(1)
3.11.3 Zero Check
207(1)
3.11.4 Frequency of Calibration
207(1)
3.12 Conclusions
208(1)
References
209(4)
Chapter 4 Local Methane Detection and Power Cut-Off System 213(34)
4.1 Introduction
213(1)
4.2 Mine Disasters Due To Explosions
214(3)
4.2.1 Degree of Gassiness
215(1)
4.2.2 Explosive Limits
216(1)
4.3 System Description
217(13)
4.3.1 IR Gas Sensor
218(2)
4.3.2 Power Supply
220(3)
4.3.3 Real-Time Clock
223(1)
4.3.4 Visual Display Unit
223(1)
4.3.5 Microcontroller Unit
224(1)
4.3.6 Keypad Arrangement
224(1)
4.3.7 Automatic Power Cut-Off Unit
224(1)
4.3.8 Suck-In Fan
225(2)
4.3.9 Methane Concentration Recording Unit
227(1)
4.3.10 Data Extension Port Facility
227(1)
4.3.11 Sensing and Alarm Generating Unit
228(2)
4.3.12 Remote Readout Unit
230(1)
4.3.13 Integration of Subsystems
230(1)
4.4 Safety Measures
230(7)
4.4.1 Intrinsic Safety Analysis of Components
230(6)
4.4.2 Intrinsic Safety Analysis for Circuits
236(1)
4.5 Current Drawn by Circuit
237(2)
4.6 Component Details
239(6)
4.6.1 Resistors and Zener Diodes
239(1)
4.6.2 Other Components
239(6)
4.7 Conclusions
245(1)
References
245(2)
Chapter 5 Integrated Mine Environment and Strata Condition Monitoring System 247(32)
5.1 Introduction
247(1)
5.2 Monitoring of Underground Mine Conditions
247(13)
5.2.1 Monitoring of Environmental Conditions
248(7)
5.2.2 Monitoring of Strata Conditions
255(2)
5.2.3 Microseismic Monitoring of Roof Fall
257(3)
5.3 System Description
260(12)
5.3.1 Functions of Microcontrollers
261(1)
5.3.2 Sensor Operation and Working Principle
262(1)
5.3.3 Power Supply
263(3)
5.3.4 Installation Procedure
266(5)
5.3.5 Ingress Protected Enclosure
271(1)
5.3.6 Safety Compliance
272(1)
5.4 Trial Run
272(1)
5.5 Features and Applications
273(1)
5.6 Conclusions
274(1)
References
274(5)
Chapter 6 Formation of Digital Mine Using the Internet of Things 279(72)
6.1 Introduction
279(1)
6.2 The Internet of Things
280(10)
6.2.1 Elements of the loT
281(4)
6.2.2 Functions of the loT
285(1)
6.2.3 Structure of the loT
286(2)
6.2.4 Properties of the loT System
288(2)
6.3 Concept of the Digital Mine
290(5)
6.3.1 Digital Mine System Framework
291(2)
6.3.2 Features of Monitoring System
293(2)
6.4 Creation of 3D Underground Mine Model
295(6)
6.4.1 Zebedee Mobile Mapping System
295(3)
6.4.2 3D Modeling
298(3)
6.5 Framework for Real-Time Monitoring of Underground Mine
301(4)
6.5.1 Hardware Design of Nodes
303(1)
6.5.2 Information Monitoring Center
304(1)
6.6 Monitoring and Tracking of Underground Miners
305(4)
6.6.1 RFID Localization System
307(1)
6.6.2 Multidimensional Scaling-Based Localization Algorithm for RFID Systems
308(1)
6.7 Monitoring of Gases
309(2)
6.8 Water Inrush and Waterlogged Area Monitoring
311(4)
6.8.1 Real-Time Monitoring of Water Inrush
311(1)
6.8.2 Real-Time Monitoring of Water-Bearing Structure
312(2)
6.8.3 Framework of Groundwater Perception System
314(1)
6.9 Condition Monitoring of Mine Machinery
315(2)
6.10 Monitoring of Goaf Area
317(4)
6.10.1 3D Visualization of Goaf Area
318(1)
6.10.2 Strata Monitoring Based on Microseismic Waves
319(1)
6.10.3 Monitoring of Gases
320(1)
6.11 Strata Monitoring of Underground Mines
321(3)
6.12 Mine Fire Detection and Early-Warning System
324(1)
6.13 Monitoring of Conveyor Belt and Coal Production
325(4)
6.13.1 Belt Conveyor Monitoring System
326(1)
6.13.2 Production Monitoring
327(2)
6.14 Monitoring of Mine Ventilation
329(6)
6.14.1 Ventilation. System
329(1)
6.14.2 Ventilation Layout
330(1)
6.14.3 Real-Time Monitoring
331(1)
6.14.4 Simulation and Modeling of Mine Ventilation Network
332(3)
6.15 Monitoring of Stowing Practices in Underground Mines
335(2)
6.16 Production Planning and Management
337(1)
6.17 Simulation of Production Scheduling
338(2)
6.18 Training of Rescue Team and Miners
340(5)
6.18.1 System Architecture
341(2)
6.18.2 System Functions
343(1)
6.18.3 Mine Safety Chamber
344(1)
6.19 Conclusions
345(2)
References
347(4)
Chapter 7 Application of Cloud Computing Technology in Mining Industry 351(46)
7.1 Introduction
351(1)
7.2 Evolution of Cloud Computing Technology
351(3)
7.3 Difference Between Traditional Computing and Cloud Computing
354(1)
7.4 Cloud Systems
354(9)
7.4.1 Cloud Computing Deployment Models
354(2)
7.4.2 Cloud Computing Services
356(2)
7.4.3 Characteristics of Cloud Computing
358(2)
7.4.4 Cloud Computing Offering Companies
360(1)
7.4.5 Advantages of Cloud Computing Technology
361(1)
7.4.6 Disadvantages of Cloud Computing
362(1)
7.5 Cloud Computing Technology for Mining Industry
363(31)
7.5.1 Cloud Computing Implementation Procedure for Mines
363(3)
7.5.2 Benefits From Cloud Computing Technology
366(3)
7.5.3 Applications in Mining Industry
369(25)
7.6 Conclusions
394(1)
References
395(2)
Index 397
Swadesh Chaulya is a scientist at CSIR-Central Institute of Mining and Fuel Research (CSIR-CIMFR), Dhanbad, India. His fields of research include design and development of monitoring, control and automation systems for mines and hazardous areas; geotechnical and environmental studies; and application of wireless communication technologies in underground mines. He completed his Ph.D. degree in the year 1997 and has worked on various projects sponsored by different ministries of India and the World Bank, including the development of wireless communication system for underground mines, tracking and monitoring system using RFID tags for disaster management, slope failure monitoring technique using wireless sensor networking, feasibility assessment model for underground coal gasification, and tracking system for controlling illegal mining and coal transportation. Presently he is working in various wireless sensor networking, environmental monitoring and surveillance projects sponsored by MCIT, Government of India. G. M. Prasad is Senior Principal Scientist in Central Institute of Mining and Fuel Research (CSIR-CIMFR), Dhanbad, India. His areas of research are studies of various electrical and electronic properties of semiconductor materials, optical fiber communication, fiber-optic sensor development and communication system for mining and allied industries. He completed his Ph.D. degree in Applied Physics in the year 1997 from Indian School of Mines, Dhanbad. He has 24 years of experience in the field of communication, development of sensors, safe use of electrical and electronics equipment in mines, monitoring and up-gradation of various testing analysis and calibration related activities of the institute. He has worked on various research projects, sponsored by different ministries of India, such as development of optical fiber communication system for mines, slope failure monitoring technique using wireless sensor networking, feasibility assessment model for underground coal gasification, and tracking system for controlling illegal mining and coal transportation. Presently, he is working in various wireless sensor network, software development, and surveillance monitoring projects sponsored by MCIT, Government of India.