Atnaujinkite slapukų nuostatas

El. knyga: Sensors, Actuators, and their Interfaces: A multidisciplinary introduction

(University of Akron, USA)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

As sensors and actuators are normally not (and have not been) treated in academic curricula as a subject in its own right; many students and current professionals often find themselves limited in their knowledge and dealing with topics and issues based on material they may have never encountered. Until now.

This book brings sensors, actuators and interfaces out of obscurity and integrates them for multiple disciplines including electrical, mechanical, chemical, and biomedical engineering. Real world cases, worked examples, and problem sets with selected answers provide both fundamental understanding and how industry develops sensor systems. Students and professionals from any of these disciplines will easily learn the foundational concepts and then be able to apply them to cross-discipline requirements.

The idea is simple. A sensor system in general is made of three components:

  1. Inputs (sensors)
  2. Outputs (actuators)
  3. Processor (the unit to which the inputs and outputs are connected and performs all, or the most, tasks needed to interface them)

Sensors, Actuators, and their Interfaces focuses on the broad area of detection, outlining and simplifying the understanding of theory behind sensing and actuation. It is an invaluable textbook for undergraduate and graduate level courses, as well as a reference for professionals who were never afforded the opportunity to take an introductory course.



This book brings sensors, actuators and interfaces out of obscurity and integrates them for multiple disciplines including electrical, mechanical, chemical, and biomedical engineering. Real world cases, worked examples, and problem sets with selected answers provide both fundamental understanding and how industry develops sensor systems.



This undergraduate textbook introduces students to the principles and applications of sensors and actuators, crossing multiple disciplines including aerospace, biomedical, chemical, civil, electrical and mechanical engineering. An excellent professional reference for those needing to learn the basics of sensing and actuation, this book is a good choice for industry training seminars.

This book “connects the dots” of theory and circuits basics into meaningful systems and real-world applications. Designed to introduce students and practitioners to the principles and applications of sensors and actuators, this book discusses processing hardware and the embedded systems software that connects them.

It is written based on the theory that a system is made of three components: Inputs, Outputs and Processors and looks at sensors and actuators based on the broad area of detection. Important coverage is given to interfacing (the processes and mechanisms between the sensor and actuator) that make a system work reliably and accurately. The material is presented with clear explanations, examples and diagrams, making it ideal for students and practitioners concerned with systems engineering in a broad variety of fields, especially those that depend on sensors for detecting pre-determined conditions.

Supplementary materials for professors are available via email to books@theiet.org.
Preface with Publisher's Acknowledgements xv
1 Introduction
1(30)
1.1 Introduction
1(2)
1.2 A Short Historical Note
3(1)
1.3 Definitions
4(8)
1.4 Classification of Sensors and Actuators
12(4)
1.5 General Requirements for Interfacing
16(2)
1.6 Units
18(8)
1.6.1 Base SI Units
18(1)
1.6.2 Derived Units
19(1)
1.6.3 Supplementary Units
20(1)
1.6.4 Customary Units
20(2)
1.6.5 Prefixes
22(1)
1.6.6 Other Units and Measures
22(1)
1.6.6.1 Units of Information
22(1)
1.6.6.2 The Decibel (dB) and Its Use
23(3)
1.7 Problems
26(5)
2 Performance Characteristics of Sensors and Actuators
31(36)
2.1 Introduction
31(1)
2.2 Input and Output Characteristics
32(29)
2.2.1 Transfer Function
32(3)
2.2.2 Impedance and Impedance Matching
35(4)
2.2.3 Range, Span, Input and Output Full Scale, Resolution, and Dynamic Range
39(3)
2.2.4 Accuracy, Errors, and Repeatability
42(3)
2.2.5 Sensitivity and Sensitivity Analysis
45(7)
2.2.6 Hysteresis, Nonlinearity, and Saturation
52(4)
2.2.7 Frequency Response, Response Time, and Bandwidth
56(2)
2.2.8 Calibration
58(1)
2.2.9 Excitation
59(1)
2.2.10 Deadband
59(1)
2.2.11 Reliability
59(2)
2.3 Problems
61(6)
3 Temperature Sensors and Thermal Actuators
67(62)
3.1 Introduction
67(3)
3.1.1 Units of Temperature, Thermal Conductivity, Heat, and Heat Capacity
69(1)
3.2 Thermoresistive Sensors: Thermistors, Resistance Temperature Sensors, and Silicon Resistive Sensors
70(18)
3.2.1 Resistance Temperature Detectors
70(8)
3.2.1.1 Self-Heat of RTDs
78(2)
3.2.1.2 Response Time
80(1)
3.2.2 Silicon Resistive Sensors
81(3)
3.2.3 Thermistors
84(4)
3.3 Thermoelectric Sensors
88(16)
3.3.1 Practical Considerations
94(7)
3.3.2 Semiconductor Thermocouples
101(1)
3.3.3 Thermopiles and Thermoelectric Generators
102(2)
3.4 p-n Junction Temperature Sensors
104(5)
3.5 Other Temperature Sensors
109(9)
3.5.1 Optical and Acoustical Sensors
109(1)
3.5.2 Thermomechanical Sensors and Actuators
110(8)
3.6 Problems
118(11)
4 Optical Sensors and Actuators
129(48)
4.1 Introduction
130(1)
4.2 Optical Units
131(1)
4.3 Materials
132(1)
4.4 Effects of Optical Radiation
132(6)
4.4.1 Thermal Effects
132(1)
4.4.2 Quantum Effects
133(1)
4.4.2.1 The Photoelectric Effect
133(2)
4.4.2.2 Quantum Effects: The Photoconducting Effect
135(2)
4.4.2.3 Spectral Sensitivity
137(1)
4.4.2.4 Tunneling Effect
137(1)
4.5 Quantum-Based Optical Sensors
138(15)
4.5.1 Photoconducting Sensors
138(4)
4.5.2 Photodiodes
142(5)
4.5.3 Photovoltaic Diodes
147(3)
4.5.4 Phototransistors
150(3)
4.6 Photoelectric Sensors
153(3)
4.6.1 The Photoelectric Sensor
153(1)
4.6.2 Photomultipliers
154(2)
4.7 Coupled Charge (CCD) Sensors and Detectors
156(3)
4.8 Thermal-Based Optical Sensors
159(7)
4.8.1 Passive IR Sensors
160(1)
4.8.1.1 Thermopile PIR
160(2)
4.8.1.2 Pyroelectric Sensors
162(3)
4.8.1.3 Bolometers
165(1)
4.9 Active Far Infrared (AFIR) Sensors
166(1)
4.10 Optical Actuators
167(1)
4.11 Problems
168(9)
5 Electric and Magnetic Sensors and Actuators
177(104)
5.1 Introduction
177(2)
5.2 Units
179(1)
5.3 The Electric Field: Capacitive Sensors and Actuators
180(14)
5.3.1 Capacitive Position, Proximity, and Displacement Sensors
183(4)
5.3.2 Capacitive Fluid Level Sensors
187(2)
5.3.3 Capacitive Actuators
189(5)
5.4 Magnetic Fields: Sensors and Actuators
194(24)
5.4.1 Inductive Sensors
199(2)
5.4.1.1 Inductive Proximity Sensors
201(4)
5.4.1.2 Eddy Current Proximity Sensors
205(3)
5.4.1.3 Position and Displacement Sensing: Variable Inductance Sensors
208(3)
5.4.2 Hall Effect Sensors
211(7)
5.5 Magnetohydrodynamic (MHD) Sensors and Actuators
218(4)
5.5.1 MHD Generator or Sensor
219(1)
5.5.2 MHD Pump or Actuator
219(3)
5.6 Magnetoresistance and Magnetoresistive Sensors
222(2)
5.7 Magnetostrictive Sensors and Actuators
224(6)
5.7.1 Magnetostrictive Actuators
227(3)
5.8 Magnetometers
230(6)
5.8.1 Coil Magnetometer
230(2)
5.8.2 The Fluxgate Magnetometer
232(3)
5.8.3 The SQUID
235(1)
5.9 Magnetic Actuators
236(23)
5.9.1 Voice Coil Actuators
237(3)
5.9.2 Motors as Actuators
240(1)
5.9.2.1 Operation Principles
241(4)
5.9.2.2 Brushless, Electronically Commutated DC Motors (BLDC Motors)
245(2)
5.9.2.3 AC Motors
247(1)
5.9.2.4 Stepper Motors
248(6)
5.9.2.5 Linear Motors
254(2)
5.9.3 Magnetic Solenoid Actuators and Magnetic Valves
256(3)
5.10 Voltage and Current Sensors
259(8)
5.10.1 Voltage Sensing
260(3)
5.10.2 Current Sensing
263(4)
5.11 Problems
267(14)
6 Mechanical Sensors and Actuators
281(54)
6.1 Introduction
281(1)
6.2 Some Definitions and Units
282(1)
6.3 Force Sensors
283(14)
6.3.1 Strain Gauges
283(2)
6.3.2 Semiconductor Strain Gauges
285(3)
6.3.2.1 Application
288(1)
6.3.2.2 Errors
288(4)
6.3.3 Other Strain Gauges
292(1)
6.3.4 Force and Tactile Sensors
292(5)
6.4 Accelerometers
297(8)
6.4.1 Capacitive Accelerometers
298(2)
6.4.2 Strain Gauge Accelerometers
300(1)
6.4.3 Magnetic Accelerometers
301(1)
6.4.4 Other Accelerometers
302(3)
6.5 Pressure Sensors
305(10)
6.5.1 Mechanical Pressure Sensors
305(5)
6.5.2 Piezoresistive Pressure Sensors
310(4)
6.5.3 Capacitive Pressure Sensors
314(1)
6.5.4 Magnetic Pressure Sensors
314(1)
6.6 Velocity Sensing
315(4)
6.7 Inertial Sensors: Gyroscopes
319(5)
6.7.1 Mechanical or Rotor Gyroscopes
320(1)
6.7.2 Optical Gyroscopes
321(3)
6.8 Problems
324(11)
7 Acoustic Sensors and Actuators
335(68)
7.1 Introduction
335(2)
7.2 Units and Definitions
337(3)
7.3 Elastic Waves and Their Properties
340(10)
7.3.1 Longitudinal Waves
341(8)
7.3.2 Shear Waves
349(1)
7.3.3 Surface Waves
349(1)
7.3.4 Lamb Waves
350(1)
7.4 Microphones
350(7)
7.4.1 The Carbon Microphone
350(2)
7.4.2 The Magnetic Microphone
352(2)
7.4.3 The Ribbon Microphone
354(1)
7.4.4 Capacitive Microphones
354(3)
7.5 The Piezoelectric Effect
357(6)
7.5.1 Electrostriction
361(1)
7.5.2 Piezoelectric Sensors
361(2)
7.6 Acoustic Actuators
363(10)
7.6.1 Loudspeakers
363(6)
7.6.2 Headphones and Buzzers
369(1)
7.6.2.1 The Magnetic Buzzer
369(2)
7.6.2.2 The Piezoelectric Headphone and Piezoelectric Buzzer
371(2)
7.7 Ultrasonic Sensors and Actuators: Transducers
373(8)
7.7.1 Pulse-Echo Operation
377(3)
7.7.2 Magnetostrictive Transducers
380(1)
7.8 Piezoelectric Actuators
381(4)
7.9 Piezoelectric Resonators and SAW Devices
385(5)
7.10 Problems
390(13)
8 Chemical Sensor and Actuators
403(54)
8.1 Introduction
404(1)
8.2 Chemical Units
405(1)
8.3 Electrochemical Sensors
406(7)
8.3.1 Metal Oxide Sensors
406(3)
8.3.2 Solid Electrolyte Sensors
409(4)
8.3.3 The Metal Oxide Semiconductor (MOS) Chemical Sensor
413(1)
8.4 Potentiometric Sensors
413(8)
8.4.1 Glass Membrane Sensors
414(3)
8.4.2 Soluble Inorganic Salt Membrane Sensors
417(1)
8.4.3 Polymer-Immobilized Ionophore Membranes
418(1)
8.4.4 Gel-Immobilized Enzyme Membranes
419(1)
8.4.5 The Ion-Sensitive Field-Effect Transistor (ISFET)
420(1)
8.5 Thermochemical Sensors
421(4)
8.5.1 Thermistor-Based Chemical Sensors
421(1)
8.5.2 Catalytic Sensors
422(3)
8.5.3 Thermal Conductivity Sensor
425(1)
8.6 Optical Chemical Sensors
425(4)
8.7 Mass Sensors
429(3)
8.7.1 Mass Humidity and Gas Sensors
431(1)
8.7.2 SAW Mass Sensors
431(1)
8.8 Humidity and Moisture Sensors
432(7)
8.8.1 Capacitive Moisture Sensors
433(2)
8.8.2 Resistive Humidity Sensor
435(1)
8.8.3 Thermal Conduction Moisture Sensors
436(1)
8.8.4 Optical Humidity Sensor
437(2)
8.9 Chemical Actuation
439(6)
8.9.1 The Catalytic Converter
439(2)
8.9.2 The Airbag
441(1)
8.9.3 Electroplating
442(2)
8.9.4 Cathodic Protection
444(1)
8.10 Problems
445(12)
9 Radiation Sensors and Actuators
457(50)
9.1 Introduction
457(2)
9.2 Units of Radiation
459(1)
9.3 Radiation Sensors
460(14)
9.3.1 Ionization Sensors (Detectors)
461(1)
9.3.1.1 Ionization Chambers
461(2)
9.3.1.2 Proportional Chamber
463(1)
9.3.1.3 Geiger-Muller Counters
463(2)
9.3.2 Scintillation Sensors
465(1)
9.3.3 Semiconductor Radiation Detectors
466(1)
9.3.3.1 Bulk Semiconductor Radiation Sensor
467(3)
9.3.3.2 Semiconducting Junction Radiation Sensors
470(4)
9.4 Microwave Radiation
474(13)
9.4.1 Microwave Sensors
476(1)
9.4.1.1 Radar
476(3)
9.4.1.2 Reflection and Transmission Sensors
479(3)
9.4.1.3 Resonant Microwave Sensors
482(5)
9.4.1.4 Propagation Effects and Sensing
487(1)
9.5 Antennas as Sensors and Actuators
487(8)
9.5.1 General Relations
487(2)
9.5.2 Antennas as Sensing Elements
489(5)
9.5.3 Antennas as Actuators
494(1)
9.6 Problems
495(12)
10 MEMS and Smart Sensors
507(60)
10.1 Introduction
508(1)
10.2 Production of MEMS
509(5)
10.3 MEMS Sensors and Actuators
514(19)
10.3.1 MEMS Sensors
515(1)
10.3.1.1 Pressure Sensors
515(1)
10.3.1.2 Mass Air Flow Sensors
515(2)
10.3.1.3 Inertial Sensors
517(2)
10.3.1.4 Angular Rate Sensors
519(4)
10.3.2 MEMS Actuators
523(1)
10.3.2.1 Thermal and Piezoelectric Actuation
524(2)
10.3.2.2 Electrostatic Actuation
526(3)
10.3.3 Some Applications
529(1)
10.3.3.1 Optical Switches
529(1)
10.3.3.2 Mirrors and Mirror Arrays
529(1)
10.3.3.3 Pumps
530(1)
10.3.3.4 Valves
531(2)
10.3.3.5 Others
533(1)
10.4 Smart Sensors and Actuators
533(19)
10.4.1 Wireless Sensors and Actuators and Issues Associated with Their Use
538(1)
10.4.1.1 The ISM and SRD Bands
538(2)
10.4.1.2 The Wireless Link and Data Handling
540(2)
10.4.1.3 Transmitters, Receivers, and Transceivers
542(1)
10.4.2 Modulation and Demodulation
542(1)
10.4.2.1 Amplitude Modulation
543(1)
10.4.2.2 Frequency Modulation
544(1)
10.4.2.3 Phase Modulation
545(2)
10.4.2.4 Amplitude Shift Keying
547(1)
10.4.2.5 Frequency Shift Keying
548(1)
10.4.2.6 Phase Shift Keying
548(1)
10.4.3 Demodulation
549(1)
10.4.3.1 Amplitude Demodulation
549(1)
10.4.3.2 Frequency and Phase Demodulation
549(1)
10.4.4 Encoding and Decoding
550(1)
10.4.4.1 Unipolar and Bipolar Encoding
550(1)
10.4.4.2 Biphase Encoding
550(1)
10.4.4.3 Manchester Code
551(1)
10.5 Sensor Networks
552(4)
10.6 Problems
556(11)
11 Interfacing Methods and Circuits
567(86)
11.1 Introduction
567(3)
11.2 Amplifiers
570(14)
11.2.1 The Operational Amplifier
570(1)
11.2.1.1 Differential Voltage Gain
571(1)
11.2.1.2 Common-Mode Voltage Gain
571(1)
11.2.1.3 Bandwidth
571(1)
11.2.1.4 Slew Rate
572(1)
11.2.1.5 Input Impedance
573(1)
11.2.1.6 Output Impedance
573(1)
11.2.1.7 Temperature Drift and Noise
573(1)
11.2.1.8 Power Requirements
573(1)
11.2.2 Inverting and Noninverting Amplifiers
573(1)
11.2.2.1 The Inverting Amplifier
574(1)
11.2.2.2 The Noninverting Amplifier
575(2)
11.2.3 The Voltage Follower
577(1)
11.2.4 The Instrumentation Amplifier
577(1)
11.2.5 The Charge Amplifier
578(2)
11.2.6 The Integrator and the Differentiator
580(1)
11.2.7 The Current Amplifier
581(1)
11.2.8 The Comparator
582(2)
11.3 Power Amplifiers
584(4)
11.3.1 Linear Power Amplifiers
584(2)
11.3.2 PWM and PWM Amplifiers
586(2)
11.4 Digital Circuits
588(7)
11.5 A/D and D/A Converters
595(11)
11.5.1 A/D Conversion
595(1)
11.5.1.1 Threshold Digitization
595(1)
11.5.1.2 Threshold Voltage-to-Frequency Conversion
596(2)
11.5.1.3 True A/D Converters
598(1)
11.5.1.4 Dual-Slope A/D Converter
598(2)
11.5.1.5 Successive Approximation A/D
600(2)
11.5.2 D/A Conversion
602(1)
11.5.2.1 Resistive Ladder Network D/A Conversion
602(3)
11.5.2.2 PWM D/A Conversion
605(1)
11.5.2.3 Frequency to Voltage (F/V) D/A Conversion
605(1)
11.6 Bridge Circuits
606(8)
11.6.1 Sensitivity
607(4)
11.6.2 Bridge Output
611(3)
11.7 Data Transmission
614(4)
11.7.1 Four-Wire Transmission
614(1)
11.7.2 Two-Wire Transmission for Passive Sensors
615(1)
11.7.3 Two-Wire Transmission for Active Sensors
615(3)
11.7.4 Digital Data Transmission Protocols and Buses
618(1)
11.8 Excitation Methods and Circuits
618(17)
11.8.1 Linear Power Supplies
619(2)
11.8.2 Switching Power Supplies
621(3)
11.8.3 Current Sources
624(1)
11.8.4 Voltage References
625(1)
11.8.5 Oscillators
626(1)
11.8.5.1 Crystal Oscillators
627(2)
11.8.5.2 LC and RC Oscillators
629(6)
11.9 Noise and Interference
635(4)
11.9.1 Inherent Noise
635(1)
11.9.2 Interference
636(3)
11.10 Problems
639(14)
12 Interfacing to Microprocessors
653(58)
12.1 Introduction
654(1)
12.2 The Microprocessor as a General Purpose Controller
654(16)
12.2.1 Architecture
655(1)
12.2.2 Addressing
656(1)
12.2.3 Execution and Speed
656(1)
12.2.4 Instruction Set
657(2)
12.2.5 Input and Output
659(3)
12.2.6 Clock and Timers
662(2)
12.2.7 Registers
664(1)
12.2.8 Memory
664(2)
12.2.9 Power
666(3)
12.2.10 Other Peripherals and Functionalities
669(1)
12.2.11 Programs and Programmability
670(1)
12.3 General Requirements for Interfacing Sensors and Actuators
670(17)
12.5.7 Signal Level
671(1)
12.3.2 Impedance
672(4)
12.3.3 Response and Frequency
676(1)
12.3.4 Input Signal Conditioning
677(1)
12.3.4.1 Offset
677(4)
12.3.4.2 Scaling
681(2)
12.3.4.3 Isolation
683(1)
12.3.4.4 Loading
684(1)
12.3.5 Output Signals
684(3)
12.4 Errors
687(12)
12.4.1 Resolution Errors
687(3)
12.4.2 Computation Errors
690(7)
12.4.3 Sampling and Quantization Errors
697(1)
12.4.4 Conversion Errors
698(1)
12.5 Problems
699(12)
Answers to Problems 711(14)
Appendix A 725(4)
Appendix B 729(14)
Appendix C 743(10)
Index 753
Nathan Ida is currently a Distinguished Professor of Electrical and Computer Engineering at the University of Akron. He received his Bachelor and Master degrees from Ben-Gurion University of the Negev (Israel) and his Ph.D. from Colorado State University in 1983. Dr. Ida has written five successful books in electromagnetics including the undergraduate textbook Engineering Electromagnetics (now in its second edition). He teaches several courses at the University of Akron including a very popular course on sensors and actuators, which is the foundation of this book. He has researched and developed systems for industrial use that help control the thickness of rubber during tire production, oil leak sensing systems, wireless sensors and networks, and many other systems for several clients. He is a Fellow of the IEEE, ASNT (American Society for Nondestructive Testing), and ACES (Applied Computational Electromagnetics Society).