Atnaujinkite slapukų nuostatas

El. knyga: Sensors and Measurement Systems

  • Formatas: 244 pages
  • Išleidimo metai: 01-Sep-2022
  • Leidėjas: River Publishers
  • Kalba: eng
  • ISBN-13: 9781000796766
  • Formatas: 244 pages
  • Išleidimo metai: 01-Sep-2022
  • Leidėjas: River Publishers
  • Kalba: eng
  • ISBN-13: 9781000796766

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Sensors and Measurement Systems is an introduction to microsensors for engineering students in the final undergraduate or early graduate level, technicians who want to know more about the systems they are using, and anybody curious enough to know what microsystems and microsensors can do.

The book discusses five families of sensors:
- Thermal sensors
- Force and pressure sensors
- Inertial sensors
- Magnetic field sensors
- Flow sensors

For each sensor, theoretical, technology and application aspects are examined. The sensor function is modelled to understand sensitivity, resolution and noise. We ask ourselves: What do we want to measure? What are possible applications? How are the sensor chips made in the cleanroom? How are they mounted and integrated in a system?

After reading this book, you should be able to:
- Understand important thermal, mechanical, inertial and magnetic sensors
- Work with characterization parameters for sensors
- Choose sensors for a given application and apply them
- Understand micromachining technologies for sensors
Acknowledgment ix
List of Figures
xi
List of Tables
xix
List of Abbreviations
xxi
Introduction: The Idea of This Book 1(6)
1 Thermal Sensors
7(40)
1.1 Measuring the Temperature
7(9)
1.1.1 Thermoelectric Effect (Seebeck Effect)
8(5)
1.1.2 Thermoresistive Effect
13(2)
1.1.3 Pyroelectric Effect
15(1)
1.2 Radiation Thermometer
16(19)
1.2.1 Static Modeling of Thermal Transport and Understanding Sensitivity
20(4)
1.2.2 Modeling Dynamic Behavior
24(4)
1.2.3 The Noise of the Thermopile
28(4)
1.2.4 Sensor Electronics: Building the System
32(1)
1.2.5 The Alternatives: Pyroelectric Sensor and Bolometer
33(2)
1.3 A Topical Application Example: Infrared Gas Sensing of Ethylene
35(3)
1.4 Important Terms and Definitions for Sensor Characterization
38(3)
1.5 Excursus to Wireless Sensor Networks
41(4)
Questions
45(2)
2 Sensor Technology
47(48)
2.1 Basics of Microtechnology
47(2)
2.2 Thin Films
49(15)
2.2.1 Silicon as a Substrate
49(1)
2.2.2 Thin Films
49(4)
2.2.3 Thin-Film Deposition Methods: An Overview
53(1)
2.2.4 Physical Vapor Deposition (PVD)
53(6)
2.2.5 Chemical Vapor Deposition (CVD)
59(3)
2.2.6 Oxidation of Silicon
62(1)
2.2.7 Surface Migration and Step Coverage
63(1)
2.3 Thin-Film Deposition Control
64(4)
2.3.1 Metal Films: Measuring Sheet Resistance
65(1)
2.3.2 Dielectric Films: Interferometers
66(2)
2.3.3 Doping
68(1)
2.4 Wafer Bonding
68(2)
2.4.1 Silicon Fusion Bonding
68(1)
2.4.2 Anodic Bonding
69(1)
2.5 Making Structures
70(13)
2.5.1 Lithography
70(4)
2.5.2 Etching Fundamentals
74(2)
2.5.3 Anisotropic Wet Etching of Silicon
76(3)
2.5.4 Dry Etching
79(4)
2.6 The Thermopile Process
83(7)
2.7 The Recent Trend: Flexible Structures and Polymer MEMS
90(4)
Questions
94(1)
3 Force and Pressure Sensors
95(48)
3.1 The Piezoresistive Effect
95(3)
3.2 Strain Gauges and Force Sensing
98(1)
3.3 Pressure Sensors: Dimensions, Ranges and Applications
99(3)
3.4 Piezoresistive Pressure Sensors
102(4)
3.4.1 Steel Membrane Sensors
102(3)
3.4.2 Silicon Membrane Sensors
105(1)
3.5 From the Wafer to the System - Technology of the Silicon Pressure Sensor
106(23)
3.5.1 Silicon Technology
106(3)
3.5.2 Electric Test Structures
109(4)
3.5.3 Mounting and Housing Technology
113(2)
3.5.4 Integrating MEMS and Electronics
115(3)
3.5.5 Example of a Commercial Pressure Sensor
118(3)
3.5.6 Sensor Electronics
121(5)
3.5.7 Calibration
126(1)
3.5.8 System Test, Reliability and Failure Modes
127(2)
3.6 Capacitive Pressure Sensors
129(5)
3.7 The Recent Trend: Additive Technology and Printed Sensors
134(7)
Questions
141(2)
4 Inertial Sensors
143(34)
4.1 Inertial Measurement of Motion
143(1)
4.2 Acceleration Sensors
144(13)
4.2.1 Applications and Ranges
144(3)
4.2.2 Sensor Principles and Resonance
147(3)
4.2.3 Layout and Technology
150(3)
4.2.4 Accelerometer Electronics
153(2)
4.2.5 Resolution and Noise
155(2)
4.3 Angular Rate Sensors
157(18)
4.3.1 Applications and Ranges
158(2)
4.3.2 Sensor Idea and Coriolis Force
160(1)
4.3.3 Layout
161(7)
4.3.4 Technology
168(3)
4.3.5 Movement and Noise
171(2)
4.3.6 Inertial Measurement Units (IMU) and Sensor Fusion
173(2)
Questions
175(2)
5 Magnetic Sensors
177(16)
5.1 Dimensions, Ranges and Applications
177(1)
5.2 The Hall Sensor
178(3)
5.3 The Resistive Hall Probe
181(1)
5.4 The Giant Magnetoresistive Effect
182(2)
5.5 The Tunneling Magnetoresistive Sensor
184(3)
5.6 The Fluxgate Sensor
187(4)
Questions
191(2)
6 Flow Sensors
193(22)
6.1 Ranges and Applications
193(2)
6.2 Types of Flow Sensors
195(1)
6.3 Pressure Sensors for Flow Measurement
195(3)
6.4 Coriolis Flow Sensor
198(3)
6.5 Electromagnetic Flow Sensor
201(1)
6.6 Thermal Flow Sensor
202(11)
6.6.1 Hot Wire Probe
202(1)
6.6.2 The Mass Flow Controller
203(1)
6.6.3 Thermal Membrane Flow Sensors
204(4)
6.6.4 Modeling of the Thermal Anemometer
208(5)
Questions
213(2)
Index 215(6)
About the Author 221
Walter Lang studied physics at Munich University and received his Diploma in 1982 on Raman spectroscopy of crystals with low symmetry. His Ph.D. in engineering at Munich Technical University was on flame-induced vibrations.



In 1987 he joined the Fraunhofer Institute for Solid State Technology in Munich, where he worked on microsystems technology. In 1995 he became the head of the sensors department at the Institute of Micromachining and Information Technology of the Hahn-Schickard Gesellschaft (HSG-IMIT) in Villingen-Schwenningen, Germany, working on sensors for flow and angular rate, sensor test and modelling. February 2003 Walter Lang joined the University of Bremen. He is heading the Institute for microsensors, -actuators and systems (IMSAS) and he is the speaker of the Microsystems Center Bremen (MCB). His projects cover thermal sensors, sensor networks for logistics and the embedding of sensors in materials.



Publications: http://scholar.google.de/citations?user=hveaqzoAAAAJ&hl=de