Atnaujinkite slapukų nuostatas

El. knyga: Sentiment Analysis in the Bio-Medical Domain: Techniques, Tools, and Applications

  • Formatas: EPUB+DRM
  • Serija: Socio-Affective Computing 7
  • Išleidimo metai: 23-Jan-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319684680
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Socio-Affective Computing 7
  • Išleidimo metai: 23-Jan-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319684680
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The abundance of text available in social media and health-related forums and blogs have recently attracted the interest of the public health community to use these sources for opinion mining. This book presents a lexicon-based approach to sentiment analysis in the bio-medical domain, i.e., WordNet for Medical Events (WME). This book gives an insight in handling unstructured textual data and converting it to structured machine-processable data in the bio-medical domain.

The readers will discover the following key novelties:

1) development of a bio-medical lexicon: WME expansion and WME enrichment with additional features.;

2) ensemble of machine learning and computational creativity;

3) development of microtext analysis techniques to overcome the inconsistency in social communication.

It will be of interest to researchers in the fields of socially-intelligent human-machine interaction and biomedical text mining
Introduction.- Literature Survey.- SenticNet.- Contribution to Sentiment Analysis.- Conclusion and Future Work.- Index.
Mr. Ranjan Satapathy is currently pursuing Ph.D., at the School of Computer Science and Engg., NTU Singapore under the supervision of Dr. Erik Cambria. His major research interests are deep learning, sentiment analysis and natural language processing. He completed his Bachelor's degree in Computer Science and Engg., from IIIT-Bhubaneswar, India in 2013. He further recieved a M.Tech degree from  University of Hyderabad, India in 2016, with majors in Computer Science. During his pursuits of Master's degree, he joined Dr. Cambria's research group SenticNet as an intern, where he worked on bio-medical sentiment analysis. This exposure and a keen-to-learn attitude motivated him to apply for Ph.D under Dr. Cambria.