Atnaujinkite slapukų nuostatas

Separation Process Engineering: Includes Mass Transfer Analysis 5th edition [Minkštas viršelis]

  • Formatas: Paperback / softback, 1168 pages, aukštis x plotis x storis: 204x254x44 mm, weight: 2100 g
  • Išleidimo metai: 25-Nov-2022
  • Leidėjas: Pearson
  • ISBN-10: 0137468040
  • ISBN-13: 9780137468041
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 1168 pages, aukštis x plotis x storis: 204x254x44 mm, weight: 2100 g
  • Išleidimo metai: 25-Nov-2022
  • Leidėjas: Pearson
  • ISBN-10: 0137468040
  • ISBN-13: 9780137468041
Kitos knygos pagal šią temą:
The Definitive, Learner-Friendly Guide to Chemical Engineering Separations--Extensively Updated, Including a New Chapter on Melt Crystallization

Efficient separation processes are crucial to addressing many societal problems, from developing new medicines to improving energy efficiency and reducing emissions. Separation Process Engineering, Fifth Edition, is the most comprehensive, accessible guide to modern separation processes and the fundamentals of mass transfer. In this completely updated edition, Phillip C. Wankat teaches each key concept through detailed, realistic examples using actual data--with up-to-date simulation practice, spreadsheet-based exercises, and references.

Wankat thoroughly covers each separation process, including flash, column, and batch distillation; exact calculations and shortcut methods for multicomponent distillation; staged and packed column design; absorption; stripping; and more. His extensive discussions of mass transfer and diffusion enable faculty to teach separations and mass transfer in a single course. And detailed material on liquid-liquid extraction, adsorption, chromatography, and ion exchange prepares students for advanced work.

New and updated content includes melt crystallization, steam distillation, residue curve analysis, batch washing, the Shanks system for percolation leaching, eutectic systems, forward osmosis, microfiltration, and hybrid separations. A full chapter discusses economics and energy conservation, including updated equipment costs. Over 300 new and updated homework problems are presented, all extensively tested in undergraduate courses at Purdue University.
  • New chapter on melt crystallization: solid-liquid phase equilibrium, suspension, static and falling film layer approaches, and 34 questions and problems
  • New binary VLE equations and updated content on simultaneous solutions
  • New coverage of safety and fire hazards
  • New material on steam distillation, simple multi-component batch distillation, and residue curve analysis
  • Expanded discussion of tray efficiencies, packed column design, and energy reduction in distillation
  • New coverage of two hybrid extraction with distillation, and the Kremser equation in fractional extraction
  • Added sections on deicing with eutectic systems, eutectic freeze concentration, and scale-up
  • New sections on forward osmosis and microfiltration
  • Expanded advanced content on adsorption and ion exchange including updated instructions for eight detailed Aspen Chromatography labs
  • Discussion of membrane separations, including gas permeation, reverse osmosis, ultrafiltration, pervaporation, and applications
  • Thirteen up-to-date Aspen Plus process simulation labs, adaptable to any simulator
This guide reflects an up-to-date understanding of how modern students learn: designed, organized, and written to be exceptionally clear and easy to use. It presents detailed examples in a clear, standard format, using real data to solve actual engineering problems, preparing students for their future careers.
Preface xxiii
Acknowledgments xxv
About the Author xxvii
Nomenclature xxix
Chapter 1 Introduction to Separation Process Engineering
1(12)
1.0 Summary---Objectives
1(1)
1.1 Importance of Separations
1(2)
1.2 Concept of Equilibrium
3(1)
1.3 Mass Transfer Concepts
4(1)
1.4 Problem-Solving Methods
5(1)
1.5 Units
6(1)
1.6 Computers and Computer Simulations
7(1)
1.7 Prerequisite Material
7(2)
1.8 Other Resources on Separation Process Engineering
9(4)
References
10(1)
Problems
11(2)
Chapter 2 Flash Distillation
13(62)
2.0 Summary---Objectives
13(1)
2.1 Basic Method of Flash Distillation
13(2)
2.2 Form and Sources of Equilibrium Data
15(2)
2.3 Binary VLE
17(9)
2.3.1 Graphical Binary VLE
18(4)
2.3.2 Binary VLE Equations
22(4)
2.4 Binary Flash Distillation
26(6)
2.4.1 Sequential Solution Procedure
26(2)
Example 2-1 Flash distillation of ethanol and water
28(2)
2.4.2 Simultaneous Solution Procedure
30(1)
2.4.3 Simultaneous Solution on Enthalpy-Composition Diagram
31(1)
2.5 Multicomponent VLE
32(4)
2.6 Multicomponent Flash Distillation
36(4)
Example 2-2 Multicomponent flash distillation
38(2)
2.7 Simultaneous Multicomponent Convergence
40(5)
Example 2-3 Simultaneous solution for multicomponent flash distillation
42(3)
2.8 Three-Phase Flash Calculations
45(1)
2.9 Size Calculation
45(5)
Example 2-4 Calculation of drum size
48(2)
2.10 Using Existing Flash Drums
50(12)
References
51(1)
Problems
52(10)
Appendix A Computer Simulation of Flash Distillation
62(10)
Lab 1 Introduction to Aspen Plus
62(7)
Lab 2 Flash Distillation
69(3)
Appendix B Spreadsheets for Flash Distillation
72(3)
2.B.1 Binary Flash Distillation with Excel
72(1)
Example 2-B1 Binary flash distillation of ethanol-water
72(1)
2.B.2 Multicomponent Flash Distillation with Excel
73(2)
Chapter 3 Introduction to Column Distillation
75(24)
3.0 Summary---Objectives
75(1)
3.1 Developing a Distillation Cascade
75(7)
3.2 Tray Column Distillation Equipment
82(2)
3.3 Safety
84(2)
3.4 Specifications
86(2)
3.5 External Column Balances
88(11)
Example 3-1 External balances for binary distillation
91(1)
References
92(1)
Problems
92(7)
Chapter 4 Binary Column Distillation: Internal Stage-by-Stage Balances
99(72)
4.0 Summary---Objectives
99(1)
4.1 Internal Balances
99(4)
4.2 Binary Stage-by-Stage Solution Methods
103(6)
Example 4-1 Stage-by-stage calculations by the Lewis method
107(2)
4.3 Introduction to the McCabe-Thiele Method
109(4)
4.4 Feed Line
113(7)
Example 4-2 Feed line calculations
117(3)
4.5 Complete McCabe-Thiele Method
120(3)
Example 4-3 McCabe-Thiele method
120(3)
4.6 Profiles for Binary Distillation
123(2)
4.7 Open Steam Heating
125(4)
Example 4-4 McCabe-Thiele analysis of open steam heating
125(4)
4.8 General McCabe-Thiele Analysis Procedure
129(5)
Example 4-5 Distillation with two feeds
130(4)
4.9 Other Distillation Column Situations
134(7)
4.9.1 Partial Condensers
134(1)
4.9.2 Total Reboilers
135(1)
4.9.3 Side Streams or Withdrawal Lines
136(1)
4.9.4 Intermediate Reboilers and Intermediate Condensers
137(1)
4.9.5 Stripping and Enriching Columns
138(2)
4.9.6 Column Flash Distillation
140(1)
4.10 Limiting Operating Conditions
141(2)
4.11 Efficiencies
143(2)
4.12 Subcooled Reflux and Superheated Boilup
145(1)
4.13 Simulation Problems
146(2)
4.14 New Uses for Old Columns
148(1)
4.15 Comparisons between Analytical and Graphical Methods
149(16)
References
150(1)
Problems
150(15)
Appendix A Computer Simulation of Binary Distillation
165(4)
Lab 3 Binary Distillation
165(4)
Appendix B Spreadsheet for Binary Distillation
169(2)
Example 4-B1 Binary distillation of ethanol-water
169(2)
Chapter 5 Introduction to Multicomponent Distillation
171(24)
5.0 Summary---Objectives
171(1)
5.1 Calculational Difficulties of Multicomponent Distillation
171(5)
Example 5-1 External mass balances using fractional recoveries
174(2)
5.2 Profiles for Multicomponent Distillation
176(5)
5.3 Stage-by-Stage Calculations for CMO
181(11)
Example 5-2 Bubble-point calculation
183(3)
References
186(1)
Problems
187(5)
Appendix A Simplified Spreadsheet for Stage-by-Stage Calculations for Ternary Distillation
192(3)
Example 5-A1 Stage-by-stage calculations for stripping column
192(3)
Chapter 6 Exact Calculation Procedures for Multicomponent Distillation
195(28)
6.0 Summary-Objectives
195(1)
6.1 Introduction to Matrix Solution for Multicomponent Distillation
195(1)
6.2 Component Mass Balances in Matrix Form
196(4)
6.3 Initial Guesses for Flow Rates and Temperatures
200(1)
6.4 Temperature Convergence
201(2)
Example 6-1 Matrix and bubble-point calculations
201(2)
6.5 Energy Balances in Matrix Form
203(3)
6.6 Introduction to Naphtali-Sandholm Simultaneous Convergence Method
206(1)
6.7 Discussion
207(16)
References
208(1)
Problems
208(6)
Appendix. Computer Simulations for Multicomponent Column Distillation
214(1)
Lab 4 Simulation of Multicomponent Distillation
214(2)
Lab 5 Pressure Effects and Tray Efficiencies
216(4)
Lab 6 Coupled Columns
220(3)
Chapter 7 Approximate Shortcut Methods for Multicomponent Distillation
223(18)
7.0 Summary---Objectives
223(1)
7.1 Total Reflux: Fenske Equation
223(5)
Example 7-1 Fenske equation
227(1)
7.2 Minimum Reflux: Underwood Equations
228(3)
Example 7-2 Underwood equations
231(1)
7.3 Gilliland Correlation for Number of Stages at Finite Reflux Ratios
231(10)
Example 7-3 Gilliland correlation
233(1)
References
234(1)
Problems
235(6)
Chapter 8 Introduction to Complex Distillation Methods
241(62)
8.0 Summary---Objectives
241(1)
8.1 Breaking Azeotropes with Hybrid Separations
241(2)
8.2 Binary Heterogeneous Azeotropic Distillation Processes
243(8)
8.2.1 Binary Heterogeneous Azeotropes---Single-Column System
243(2)
8.2.2 Drying Organic Compounds That Are Almost Immiscible with Water
245(1)
Example 8-1 Drying benzene by distillation
246(3)
8.2.3 Binary Heterogeneous Azeotropes---Two-Column Systems
249(2)
8.3 Continuous Steam Distillation
251(6)
8.3.1 Equilibrium
251(1)
8.3.2 One-Stage Continuous Steam Distillation
252(1)
Example 8-2 Single-stage continuous steam distillation
252(3)
8.3.3 Continuous Steam Distillation with Multiple Stages
255(2)
8.4 Pressure-Swing Distillation Processes
257(2)
8.5 Complex Ternary Distillation Systems
259(7)
8.5.1 Distillation Curves
260(3)
Example 8-3 Development of distillation curves for constant relative volatility
263(1)
8.5.2 Residue Curves
264(2)
8.5.3 Mass Balances on Distillation Curve and Residue Curve Diagrams
266(1)
8.6 Extractive Distillation
266(5)
8.7 Azeotropic Distillation with Added Solvent
271(3)
8.8 Distillation with Chemical Reaction
274(18)
References
277(1)
Problems
278(14)
Appendix A Simulation of Complex Distillation Systems
292(10)
Lab 7 Pressure-Swing Distillation for Separating Azeotropes
292(3)
Lab 8 Binary Distillation of Systems with Heterogeneous Azeotropes
295(3)
Lab 9 Simulation of Extractive Distillation
298(4)
Appendix B Spreadsheet for Distillation curve Generation for Constant Relative Volatility at Total Reflux
302(1)
Chapter 9 Batch Distillation
303(34)
9.0 Summary---Objectives
303(1)
9.1 Introduction to Batch Distillation
303(2)
9.2 Batch Distillation: Rayleigh Equation
305(2)
9.2.1 Mixed Distillate Product
305(1)
9.2.2 Distillate Product Fractions
306(1)
9.3 Simple Binary Batch Distillation
307(5)
Example 9-1 Simple binary Rayleigh distillation
309(3)
9.4 Constant-Mole Batch Distillation
312(2)
Example 9-2 Solvent exchange by constant-mole batch distillation
313(1)
9.5 Batch Steam Distillation
314(3)
Example 9-3 Batch steam distillation
315(2)
9.6 Multistage Binary Batch Distillation
317(4)
9.6.1 Constant Reflux Ratio
317(1)
Example 9-4 Multistage batch distillation
318(2)
9.6.2 Variable Reflux Ratio
320(1)
9.7 Multicomponent Simple Batch Distillation and Residue Curve Calculations
321(3)
Example 9-5 Multicomponent simple batch distillation
322(2)
9.8 Operating Time
324(10)
References
326(1)
Problems
326(8)
Appendix A Calculations for Simple Multicomponent Batch Distillation and Residue Curve Analysis
334(3)
Chapter 10 Staged and Packed Column Design
337(60)
10.0 Summary---Objectives
337(1)
10.1 Staged Column Equipment Description
338(6)
10.1.1 Trays, Downcomers, and Weirs
339(2)
10.1.2 Inlets and Outlets
341(3)
10.2 Tray Efficiencies
344(6)
10.2.1 Efficiency Definitions
344(2)
10.2.2 Prediction of Efficiencies
346(2)
Example 10-1 Overall efficiency estimation
348(1)
10.2.3 Laboratory and Pilot Plant Data
349(1)
10.3 Column Diameter Calculations
350(5)
Example 10-2 Diameter calculation for tray column
354(1)
10.4 Balancing Calculated Diameters
355(2)
10.5 Sieve Tray Layout and Tray Hydraulics
357(7)
Example 10-3 Tray layout and hydraulics
361(3)
10.6 Valve Tray Design
364(1)
10.7 Introduction to Packed Column Design
365(1)
10.8 Packings and Packed Column Internals
366(2)
10.9 Packed Column Design: HETP Method
368(3)
10.9.1 Experimental Determination of HETP
368(1)
10.9.2 HETP Behavior
369(1)
10.9.3 Data-Heuristic Design of Packed Columns
370(1)
10.10 Packed Column Flooding and Diameter Calculation
371(7)
Example 10-4 Packed column diameter calculation
374(3)
Example 10-5 Alternate packed column diameter calculation
377(1)
10.11 Economic Trade-Offs for Packed Columns
378(1)
10.12 Choice of Column Type
379(2)
10.13 Fire Hazards of Structured Packings
381(16)
References
382(3)
Problems
385(7)
Appendix. Tray and Downcomer Design with Computer Simulator
392(1)
Lab 10 Detailed Design
392(5)
Chapter 11 Economics and Energy Efficiency in Distillation
397(42)
11.0 Summary---Objectives
397(1)
11.1 Equipment Costs
397(7)
11.2 Basic Heat Exchanger Design
404(2)
11.3 Design and Operating Effects on Costs
406(8)
Example 11-1 Cost estimate for distillation
411(3)
11.4 Changes in Plant Operating Rates
414(1)
11.5 Energy Reduction in Binary Distillation Systems
415(4)
11.5.1 Energy Conservation in Existing Plants
415(1)
11.5.2 Energy Conservation in New Facilities
416(3)
11.6 Synthesis of Column Sequences for Almost Ideal Multicomponent Distillation
419(6)
11.6.1 Ternary Column Sequences
420(2)
11.6.2 Heuristics for Sequences with More Components
422(1)
Example 11-2 Sequencing columns with heuristics
423(2)
11.7 Synthesis of Distillation Systems for Nonideal Ternary Systems
425(4)
Example 11-3 Process development for separation of complex ternary mixture
427(2)
11.8 Next Steps
429(10)
References
430(1)
Problems
431(8)
Chapter 12 Absorption and Stripping
439(42)
12.0 Summary---Objectives
440(1)
12.1 Absorption and Stripping Equilibria
441(3)
12.2 McCabe-Thiele Solution for Dilute Absorption
444(2)
Example 12-1 McCabe-Thiele analysis for dilute absorber
445(1)
12.3 Stripping Analysis for Dilute Systems
446(1)
12.4 Analytical Solution for Dilute Systems: Kremser Equation
447(5)
Example 12-2 Stripping analysis with the Kremser equation
451(1)
12.5 Efficiencies
452(1)
12.6 McCabe-Thiele Analysis for More Concentrated Systems
453(4)
Example 12-3 Graphical analysis for more concentrated absorber
455(2)
12.7 Column Diameter
457(1)
12.8 Dilute Multisolute Absorbers and Strippers
458(2)
12.9 Matrix Solution for Concentrated Absorbers and Strippers
460(3)
12.10 Irreversible Absorption and Cocurrent Cascades
463(18)
References
465(1)
Problems
466(8)
Appendix. Computer Simulations of Absorption and Stripping
474(1)
Lab 11 Absorption and Stripping
474(7)
Chapter 13 Liquid-Liquid Extraction
481(70)
13.0 Summary---Objectives
481(1)
13.1 Introduction to Extraction Processes and Equipment
481(5)
13.2 Equilibrium for Dilute Systems and Solvent Selection
486(3)
13.3 Dilute, Immiscible, Countercurrent Extraction
489(10)
13.3.1 McCabe-Thiele Method for Dilute Countercurrent Extraction
489(1)
Example 13-1 Dilute countercurrent immiscible extraction
490(2)
13.3.2 Kremser Solution for Dilute Countercurrent Extraction
492(1)
13.3.3 Dilute Fractional Extraction
493(2)
13.3.4 McCabe-Thiele Analysis of Fractional Extraction
495(2)
13.3.5 Kremser Equation for Fractional Extraction
497(1)
Example 13-2 Kremser solutions for counter-current and fractional extraction
498(1)
13.4 Immiscible Single-Stage and Crossflow Extraction
499(3)
Example 13-3 Single-stage and crossflow extraction of protein
500(2)
13.5 Concentrated Immiscible Extraction
502(4)
Example 13-4 Concentrated immiscible extraction
503(3)
13.6 Immiscible Batch Extraction
506(2)
13.7 Extraction Equilibrium for Partially Miscible Ternary Systems
508(3)
13.8 Mixing Calculations and the Lever-Arm Rule
511(2)
13.9 Partially Miscible Single-Stage and Crossflow Systems
513(3)
Example 13-5 Partially miscible single-stage extraction
513(3)
13.10 Partially Miscible Countercurrent Extraction
516(6)
13.10.1 External Mass Balances
516(1)
13.10.2 Difference Points and Stage-by-Stage Calculations
517(4)
13.10.3 Complete Partially Miscible Extraction Problem
521(1)
Example 13-6 Countercurrent extraction
521(1)
13.11 Relationship Between McCabe-Thiele and Triangular Diagrams for Partially Miscible Systems
522(1)
13.12 Minimum Solvent Rate for Partially Miscible Systems
523(2)
13.13 Extraction Computer Simulations
525(1)
13.14 Design of Mixer-Settlers
526(25)
Example 13-7 Mixer-settler design
527(10)
References
537(1)
Problems
538(7)
Appendix. Computer Simulation of Extraction
545(1)
Lab 12 Extraction
545(6)
Chapter 14 Washing, Leaching, and Supercritical Extraction
551(24)
14.0 Summary---Objectives
551(1)
14.1 Generalized McCabe-Thiele and Kremser Procedures
551(1)
14.2 Washing
552(7)
14.2.1 Continuous Washing
553(4)
Example 14-1 Continuous washing
557(2)
14.2.2 Batch Washing
559(1)
14.3 Leaching
559(6)
14.3.1 Leaching Analysis with Constant Flow Rates
561(1)
14.3.2 Leaching Analysis with Variable Flow Rates
562(1)
Example 14-2 Leaching calculation
562(2)
14.3.3 Simulating Countercurrent Flow in Percolation Leaching
564(1)
14.4 Introduction to Supercritical Fluid Extraction
565(10)
References
568(1)
Problems
568(7)
Chapter 15 Introduction to Diffusion and Mass Transfer
575(78)
15.0 Summary-Objectives
576(1)
15.1 Molecular Movement Leads to Mass Transfer
577(1)
15.2 Fickian Model of Diffusivity
578(15)
15.2.1 Fick's Law and the Fickian Definition of Diffusivity
578(2)
15.2.2 Steady-State Binary Fickian Diffusion and Mass Balances without Convection
580(1)
Example 15-1 Determination of diffusivity in dilute binary mixture
580(2)
Example 15-2 Steady-state diffusion without convection: Low-temperature evaporation
582(2)
15.2.3 Unsteady Binary Fickian Diffusion with No Convection (Optional)
584(2)
15.2.4 Steady-State Binary Fickian Diffusion and Mass Balances with Convection
586(3)
Example 15-3 Steady-state diffusion with convection: High-temperature evaporation
589(4)
15.3 Values and Correlations for Fickian Binary Diffusivities
593(8)
15.3.1 Fickian Binary Gas Diffusivities
593(3)
Example 15-4 Estimation of temperature effect on Fickian gas diffusivity
596(1)
15.3.2 Fickian Binary Liquid Diffusivities
596(3)
15.3.3 Numerical Solution with Variable Binary Diffusivity
599(1)
Example 15-5 Numerical solution for variable diffusivity and molar concentration
599(2)
15.4 Linear Driving-Force Model of Mass Transfer for Binary Systems
601(14)
15.4.1 Film Theory for Dilute and Equimolar Transfer Systems
602(3)
15.4.2 Transfer through Stagnant Films: Absorbers and Strippers
605(1)
15.4.3 Binary Mass Transfer to Expanding or Contracting Objects
606(3)
Example 15-6 Shrinking diameter of oxygen bubble
609(4)
15.4.4 Binary Mass Transfer to Expanding or Contracting Objects: Variable Mass Transfer Coefficient
613(1)
Example 15-7 Sublimination of solid particle
614(1)
15.5 Correlations for Mass Transfer Coefficients
615(11)
15.5.1 Dimensionless Groups
616(1)
15.5.2 Theoretically Derived Mass Transfer Correlations
617(4)
15.5.3 Semi-Empirical and Empirical Mass Transfer Coefficient Correlations
621(2)
Example 15-8 Estimation of mass transfer coefficients
623(2)
15.5.4 Correlations Based on Analogies
625(1)
15.6 Difficulties with Fickian Diffusion Model
626(1)
15.7 Maxwell-Stefan Model of Diffusion and Mass Transfer
627(14)
15.7.1 Introductory Development of the Maxwell-Stefan Theory of Diffusion
627(2)
15.7.2 Maxwell-Stefan Equations for Binary Nonideal Systems
629(1)
15.7.3 Determining Independent Fluxes Nj,z
630(1)
15.7.4 Maxwell-Stefan Difference Equation Formulations
631(1)
15.7.5 Relationship between Maxwell-Stefan and Fickian Diffusivities
632(1)
Example 15-9 Maxwell-Stefan nonideal binary diffusion
633(2)
15.7.6 Ideal Ternary Systems
635(2)
Example 15-10 Maxwell-Stefan ideal ternary system
637(2)
15.7.7 Ternary Mass Transfer to Expanding or Contracting Objects
639(1)
Example 15-11 Ternary transfer from an evaporating drop
639(1)
15.7.8 Nonideal Ternary Systems
640(1)
15.8 Advantages and Disadvantages of Different Diffusion and Mass Transfer Models
641(1)
15.9 Useful Approximate Values
642(11)
References
642(1)
Problems
643(7)
Appendix. Spreadsheets for Examples 15-10 and 15-11
650(3)
Chapter 16 Mass Transfer Analysis for Distillation, Absorption, Stripping, and Extraction
653(52)
16.0 Summary---Objectives
653(1)
16.1 HTU-NTU Analysis of Packed Distillation Columns
653(8)
Example 16-1 Distillation in a packed column
659(2)
16.2 Relationship of HETP and HTU
661(2)
16.3 Correlations for HTU Values for Packings
663(7)
16.3.1 Bolles and Fair Correlation for HTU Values of Random Packings
664(1)
Example 16-2 Estimation of HG and HL
665(4)
16.3.2 Additional Correlations for Random and Structured Packings
669(1)
16.4 HTU-NTU Analysis of Absorbers and Strippers
670(5)
Example 16-3 Absorption of SO2
674(1)
16.5 HTU-NTU Analysis of Cocurrent Absorbers
675(2)
16.6 Prediction of Distillation Tray Efficiency
677(2)
Example 16-4 Estimation of distillation stage efficiency
678(1)
16.7 Mass Transfer Analysis of Extraction
679(11)
16.7.1 Extraction Mass Transfer Equations and HTU-NTU Analysis
680(1)
16.7.2 Calculation of Stage Efficiency in Extraction Mixers
681(3)
Example 16-5 Conversion of mass transfer coefficients and estimation of mixer stage efficiency
684(2)
16.7.3 Drop Size in Mixers
686(1)
16.7.4 Mass Transfer Coefficients in Mixers
687(1)
16.7.4.1 Mixer Mass Transfer Coefficients for Individual Drops (Optional)
687(1)
16.7.4.2 Mass Transfer Coefficients for Drop Swarms in Mixers
688(1)
16.7.4.3 Conservative Estimation of Mass Transfer Coefficients for Extraction
689(1)
16.8 Rate-Based Analysis of Distillation
690(15)
References
693(2)
Problems
695(7)
Appendix. Computer Rate-Based Simulation of Distillation
702(1)
Lab 13 Rate-Based Modeling of Distillation
702(3)
Chapter 17 Crystallization from Solution
705(68)
17.0 Summary-Objectives
706(1)
17.1 Basic Principles of Crystallization from Solution
706(6)
17.1.1 Crystallization Processes
706(2)
17.1.2 Binary Equilibrium and Crystallizer Types
708(4)
17.2 Continuous Cooling Crystallizers
712(10)
17.2.1 Equilibrium and Mass Balances for Single Solute Producing Pure Solute Crystals
713(1)
Example 17-1 Continuous cooling crystallizer mass balances without hydrates
714(1)
Example 17-2 Continuous cooling crystallizer mass balances for hydrates
714(2)
Example 17-3 Mixing solutions when hydrates are dissolved in water
716(1)
17.2.2 Binary Eutectic Systems
717(1)
Example 17-4 Eutectic equilibrium and mass balances
718(1)
17.2.3 Deicing with Eutectic Systems
719(1)
17.2.4 Eutectic Freeze Concentration (EFC)
720(1)
17.2.5 Solid Solutions
721(1)
17.3 Evaporative and Vacuum Crystallizers
722(7)
17.3.1 Equipment
722(2)
17.3.2 Analysis of Evaporative Crystallizers for Single-Solute Systems for Producing Pure Solute Crystals
724(1)
Example 17-5 Evaporative crystallizer without hydrate
725(1)
Example 17-6 Evaporative crystallizer with hydrate
725(1)
17.3.3 Simultaneous Mass, Energy, and Equilibrium Calculations
726(2)
Example 17-7 Vacuum crystallizer: Simultaneous mass, energy, and equilibrium calculations
728(1)
17.4 Experimental Crystal Size Distribution
729(5)
Example 17-8 Screen analysis of crystallization data
731(3)
17.5 Introduction to Population Balances
734(2)
17.6 Crystal Size Distributions for MSMPR Crystallizers
736(13)
17.6.1 Crystal Nucleation and Growth
737(3)
17.6.2 Development of MSMPR Equation and Determination of G and "n" from Experiment
740(1)
Example 17-9 Determination of kinetic parameters from screen analysis data
741(1)
17.6.3 Development and Application of Distributions for MSMPR Crystallizers
742(3)
Example 17-10 Use of differential mass distribution to analyze screen analysis data
745(1)
Example 17-11 Prediction of sieve analysis
746(1)
Example 17-12 Combination of equilibrium and MSMPR distribution
747(2)
17.7 Seeding
749(5)
17.7.1 CSD Analysis for Growth on Seeds in Continuous Crystallizers
750(1)
Example 17-13 CSD of seeded crystallizer
751(2)
17.7.2 Controlling Crystal Size by Seeding
753(1)
Example 17-14 Increasing crystal size with seeding
753(1)
17.8 Scaleup
754(2)
17.9 Batch and Semibatch Crystallization
756(5)
17.9.1 Temperature Control for Batch Cooling Crystallizers
756(2)
17.9.2 Antisolvent Crystallization
758(1)
Example 17-15 Antisolvent and temperature reduction crystallization
759(2)
17.10 Precipitation
761(12)
17.10.1 Precipitation by Antisolvent Addition
761(1)
17.10.2 Precipitation by Salting Out
762(1)
Example 17-16 Salting out with a common ion
762(2)
References
764(1)
Problems
765(7)
Appendix. Spreadsheet
772(1)
Chapter 18 Melt Crystallization
773(68)
18.0 Summary-Objectives
773(1)
18.1 Equilibrium Calculations for Melt Crystallization
774(6)
18.1.1 Binary Eutectic Systems
774(1)
Example 18-1 Eutectic equilibrium and mass balances
775(2)
18.1.2 Eutectic Equilibrium from Freezing Point Lowering Data
777(1)
Example 18-2 Part A: Equilibrium from freezing point data
777(1)
Example 18-2 Part B: Equilibrium from activity coefficients
778(1)
18.1.3 Linear Equilibrium for Non-eutectic Melt Crystallization
779(1)
18.2 Suspension Melt Crystallization
780(13)
18.2.1 Process
780(1)
18.2.2 Entrainment
781(1)
Example 18-3 Entrainment effects
782(2)
18.2.3 Wash Columns
784(2)
18.2.4 Heat Transfer in Suspension Melt Crystallization
786(3)
18.2.5 Film Mass Transfer in Suspension Melt Crystallization
789(3)
18.2.6 MSMPR and Seeded Crystallizer Analysis in Suspension Melt Crystallization
792(1)
18.3 Introduction to Solid-Layer Crystallization Processes: Progressive Freezing
793(15)
18.3.1 Heat and Mass Transfer in Progressive Freezing
793(2)
18.3.2 Mass Balances and Impurity Levels
795(1)
18.3.3 Heat and Mass Transfer Correlations for Progressive Freezing
796(2)
18.3.4 Growth of the Crystal Layer in Progressive Freezing
798(2)
Example 18-4 Preliminary calculations for progressive freezing
800(2)
Example 18-5 Concentrated progressive freezing
802(2)
18.3.5 Interpretation and Conclusions from Progressive Freezing Analysis
804(2)
18.3.6 Progressive Freezing of Dilute, Non-eutectic, Linear Systems
806(1)
Example 18-6 Dilute progressive freezing
807(1)
18.4 Static Solid-Layer Melt Crystallization Process
808(1)
18.5 Dynamic Solid-Layer Melt Crystallization
809(10)
18.5.1 Staging Falling-Film Crystallizers
810(1)
18.5.2 Mass and Energy Balances and Crystal Growth
811(3)
18.5.3 Heat and Mass Transfer Correlations for Falling Films
814(1)
Example 18-7 Falling-film crystallizer
815(4)
Comments on the Solution Method and the Example
819(1)
18.6 Zone Melting
819(5)
Example 18-8 Zone melting
823(1)
18.7 Post-Crystallization Processing
824(3)
18.8 Scaleup
827(1)
18.9 Hybrid Crystallization-Distillation Processes
828(5)
Example 18-9 Hybrid crystallization-distillation process
830(3)
18.10 Predictions
833(8)
18.10.1 Epitaph for Column Suspension Melt Crystallization Systems
833(1)
18.10.2 The Future of Static Solid-Layer Melt Crystallization
834(1)
References
834(2)
Problems
836(5)
Chapter 19 Introduction to Membrane Separation Processes
841(82)
19.0 Summary---Objectives
844(1)
19.1 Membrane Separation Equipment
844(3)
19.2 Membrane Concepts
847(3)
19.3 Gas Permeation (GP)
850(15)
19.3.1 GP of Binary Mixtures
851(2)
19.3.2 Binary Permeation in Perfectly Mixed Systems
853(3)
Example 19-1 Well-mixed GP---sequential, analytical solution
856(1)
Example 19-2 Well-mixed GP---simultaneous solutions
857(4)
19.3.3 Multicomponent Permeation in Perfectly Mixed Systems
861(1)
Example 19-3 Multicomponent, perfectly mixed GP
862(1)
19.3.4 Effect of Pores and Holes in Membrane
863(1)
Example 19-4 Effect of holes
864(1)
19.4 Osmosis and Reverse Osmosis (RO)
865(16)
19.4.1 Analysis of Osmosis
866(2)
19.4.2 Analysis of RO
868(2)
19.4.3 RO in Well-Mixed Modules
870(1)
Example 19-5 Determination of RO membrane properties
871(2)
Example 19-6 RO without concentration polarization
873(1)
19.4.4 Mass Transfer Analysis of Concentration Polarization
874(2)
Example 19-7 RO with concentration polarization
876(2)
Example 19-8 Prediction of RO performance with concentration polarization
878(1)
19.4.5 Forward Osmosis (FO)
879(2)
19.5 Ultrafiltration (UF)
881(10)
19.5.1 UF Membranes and Basic Equations
882(2)
19.5.2 Gel Formation in UF
884(1)
Example 19-9 UF with gel formation
885(1)
19.5.3 UF Operating Methods
886(1)
19.5.4 Microfiltration (MF)
887(1)
Example 19.10 Part I: MF with small particles
888(1)
Example 19.10 Part II: MF with particles 1.0 μ
889(1)
19.5.5 Tricky Units
890(1)
19.6 Pervaporation
891(11)
19.6.1 Pervaporation Basics
891(3)
19.6.2 Pervaporation Design Using Experimental Data
894(2)
Example 19-11 Part I: Pervap---feasibility calculation
896(1)
Example 19-11 Part II: Development of a feasible design
897(1)
19.6.3 Theoretical Analysis and Design of Pervaporation Systems
898(1)
Example 19-12 Analysis of pervaporation data
899(3)
19.7 Bulk Flow Pattern Effects
902(16)
Example 19-13 Flow pattern effects in GP
902(1)
19.7.1 Binary Crossflow Permeation
903(2)
19.7.2 Binary Cocurrent and Countercurrent Permeation
905(1)
References
905(2)
Problems
907(11)
Appendix A Spreadsheet for Crossflow GP
918(5)
Chapter 20 Introduction to Adsorption, Chromatography, and Ion Exchange
923(68)
20.0 Summary---Objectives
924(1)
20.1 Adsorbents and Adsorption Equilibrium
924(11)
20.1.1 Definitions
924(2)
20.1.2 Adsorbent Types
926(3)
20.1.3 Adsorption Equilibrium Behavior
929(3)
Example 20-1 Adsorption equilibrium
932(3)
20.2 Solute Movement Analysis for Linear Systems: Basics and Applications to Chromatography
935(7)
20.2.1 Movement of Solute in a Column
935(2)
20.2.2 Solute Movement Theory for Linear Isotherms
937(1)
20.2.3 Application of Linear Solute Movement Theory to Purge Cycles and Elution Chromatography
938(1)
Example 20-2 Linear solute movement analysis of elution chromatography
939(3)
20.3 Solute Movement Analysis for Linear Systems: Temperature and Pressure Swing Adsorption and Simulated Moving Beds
942(21)
20.3.1 Temperature Swing Adsorption
942(3)
Example 20-3 Thermal regeneration with linear isotherm
945(5)
20.3.2 Pressure Swing Adsorption
950(2)
Example 20-4 PSA system
952(5)
20.3.3 Simulated Moving Beds
957(3)
Example 20-5 SMB system
960(3)
20.4 Nonlinear Solute Movement Analysis
963(7)
20.4.1 Diffuse Waves
963(1)
Example 20-6 Diffuse wave
964(2)
20.4.2 Shock Waves
966(2)
Example 20-7 Self-sharpening shock wave
968(2)
20.5 Ion Exchange
970(21)
20.5.1 Ion-Exchange Equilibrium
972(2)
20.5.2 Movement of Ions
974(1)
Example 20-8 Ion movement for divalent-monovalent exchange
975(3)
References
978(2)
Problems
980(11)
Chapter 21 Mass Transfer Analysis of Adsorption, Chromatography, and Ion Exchange
991(66)
21.0 Summary---Objectives
991(1)
21.1 Mass and Energy Transfer in Packed Beds
991(9)
21.1.1 Mass Transfer and Diffusion
992(2)
21.1.2 Column Mass Balances
994(1)
21.1.3 Lumped Parameter Mass Transfer
994(4)
21.1.4 Energy Balances and Heat Transfer
998(1)
21.1.5 Derivation of Solute Movement Theory
999(1)
21.1.6 Detailed Simulators
1000(1)
21.2 Mass Transfer Solutions for Linear Systems
1000(8)
21.2.1 Lapidus and Amundson Solution for Local Equilibrium with Dispersion in Liquids
1000(2)
21.2.2 Superposition in Linear Systems
1002(1)
Example 21-1 Lapidus and Amundson solution for elution
1003(1)
21.2.3 Linear Chromatography
1004(2)
Example 21-2 Determination of linear isotherm parameters, N, and resolution for linear chromatography
1006(2)
21.3 Nonlinear Systems
1008(11)
21.3.1 Constant Pattern Analysis
1008(2)
Example 21-3 Development of constant pattern solution
1010(1)
Example 21-4 Constant pattern calculation
1011(2)
21.3.2 Length of Unused Bed Approach for Constant Patterns
1013(2)
21.3.3 Scaling LUB and Constant Pattern Systems
1015(1)
Example 21-5 Scaling LUB approach with pore diffusion control
1016(2)
21.3.4 Data Mining Breakthrough Experiments
1018(1)
21.3.5 Review of Proportional Pattern Options
1019(1)
21.4 Checklist for Practical Design and Operation
1019(38)
References
1021(1)
Problems
1022(8)
Appendix. Aspen Chromatography Simulator
1030(1)
Lab AC1 Introduction to Aspen Chromatography
1031(4)
Lab AC2 Convergence for Linear Isotherms
1035(1)
Lab AC3 Convergence for Nonlinear Isotherms
1036(2)
Lab AC4 Cycle Organizer
1038(3)
Lab AC5 Flow Reversal
1041(4)
Lab AC6 Ion Exchange
1045(3)
Lab AC7 SMB and TMB
1048(3)
Lab AC8 Thermal Systems
1051(6)
Answers to Selected Problems
1057(30)
Appendix A Aspen Plus Troubleshooting Guide for Separations
1063(4)
Appendix B Instructions for Fitting VLE and LLE Data with Aspen Plus
1067(4)
Appendix C Unit Conversions and Physical Constants
1071(2)
Appendix D Data Locations
1073(14)
Index 1087
Phillip C. Wankat, Clifton L. Lovell Distinguished Professor of Chemical Engineering Emeritus at Purdue University, has served as director of undergraduate degree programs at Purdue's School of Engineering Education. His research interests include adsorption, large-scale chromatography, simulated moving bed systems, distillation, and improvements in engineering education. His teaching, research, and service awards have included Purdue's College of Education's 2007 Distinguished Education Alumni Award, the Morrill award (Purdue University's highest faculty award), and the 2016 AIChE Warren K. Lewis award.