neleidžiama
neleidžiama
Skaitmeninių teisių valdymas (DRM)
Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).
Reikalinga programinė įranga
Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)
Norint skaityti šią el. knygą asmeniniame arba Mac kompiuteryje, Jums reikalinga Adobe Digital Editions (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas Adobe Reader, kurią tikriausiai jau turite savo kompiuteryje.)
Negalite skaityti šios el. knygos naudodami Amazon Kindle.
1. Optimal control problems with ODEs. 1.1. Formulation of ODE optimal control problems. 1.2. The controlled ODE model. 1.3. Existence of optimal controls. 1.4. Optimality conditions. 1.5. The Pontryagin maximum principle. 1.6. The PMP and path constraints. 1.7. Sufficient conditions for optimality. 1.8. Analytical solutions via PMP. 2. The sequential quadratic hamiltonian method. 2.1. Successive approximations schemes. 2.2. The sequential quadratic hamiltonian method. 2.3. Mixed control and state constraints. 2.4. Time-optimal control problems. 2.5. Analysis of the SQH method. 3. Optimal relaxed controls. 3.1. Young measures and optimal relaxed controls. 3.2. The sequential quadratic hamiltonian method. 3.3. The SQH minimising property. 3.4. An application with two relaxed controls. 4. Differential Nash games. 4.1. Introduction. 4.2. PMP characterization of Nash games. 4.3. The SQH method for solving Nash games. 4.4. Numerical experiments. 5. Deep learning in residual neural networks. 5.1. Introduction. 5.2. Supervised learning and optimal control. 5.3. The discrete maximum principle. 5.4. The sequential quadratic hamiltonian method. 5.5. Wellposedness and convergence results. 5.6. Numerical experiments. 6. Control of stochastic models. 6.1. Introduction. 6.2. Formulation of ensemble optimal control problems. 6.3. The PMP characterisation of optimal controls. 6.4. The Hamilton-Jacobi-Bellman equation. 6.5. Two SQH methods. 6.6. Numerical experiments. 7. PDE optimal control problems 7.1 Introduction. 7.2. Elliptic optimal control problems. 7.3. The sequential quadratic hamiltonian method. 7.4. Linear elliptic optimal control problems. 7.5. A problem with discontinuous control costs. 7.6. Bilinear elliptic optimal control problems. 7.7. Nonlinear elliptic optimal control problems. 7.8. A problem with state constraints. 7.9. A non-smooth problem with L1 tracking term. 7.10. Parabolic optimal control problems. 7.11. Hyperbolic optimal control problems. 8. Identification of a diffusion coefficient. 8.1. Introduction. 8.2. An inverse diffusion coefficient problem. 8.3. The SQH method. 8.4. Finite element approximation. 8.5. Numerical experiments. A. Results of analysis.