List of contributors |
|
xiii | |
Preface |
|
xv | |
Part I Introduction |
|
1 | (46) |
|
1 Fabless silicon photonics |
|
|
3 | (25) |
|
|
3 | (2) |
|
1.2 Silicon photonics: the next fabless semiconductor industry |
|
|
5 | (2) |
|
1.2.1 Historical context Photonics |
|
|
6 | (1) |
|
|
7 | (3) |
|
|
8 | (2) |
|
1.4 Technical challenges and the state of the art |
|
|
10 | (7) |
|
1.4.1 Waveguides and passive components |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
1.4.5 Approaches to photonicelectronic integration |
|
|
15 | (2) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (5) |
|
|
17 | (1) |
|
1.5.2 Photonic system engineering |
|
|
17 | (2) |
|
A transition from devices to systems |
|
|
18 | (1) |
|
1.5.3 Tools and support infrastructure |
|
|
19 | (1) |
|
Electronicphotonic co-design |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
1.5.5 Process standardization and a history of MPW services |
|
|
20 | (11) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (6) |
|
2 Modelling and design approaches |
|
|
28 | (19) |
|
2.1 Optical waveguide mode solver |
|
|
28 | (3) |
|
|
31 | (8) |
|
|
31 | (4) |
|
|
32 | (3) |
|
|
35 | (1) |
|
2.2.3 Additional propagation methods |
|
|
36 | (2) |
|
2D FDTD with Effective Index Method |
|
|
36 | (1) |
|
Beam Propagation Method (BPM) |
|
|
37 | (1) |
|
Eigenmode Expansion Method (EME) |
|
|
37 | (1) |
|
Coupled Mode Theory (CMT) |
|
|
38 | (1) |
|
Transfer Matrix Method (TMM) |
|
|
38 | (1) |
|
2.2.4 Passive optical components |
|
|
38 | (1) |
|
2.3 Optoelectronic models |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
2.6 Photonic circuit modelling |
|
|
40 | (1) |
|
|
41 | (1) |
|
2.8 Software tools integration |
|
|
42 | (1) |
|
|
43 | (4) |
Part II Passive components |
|
47 | (168) |
|
3 Optical materials and waveguides |
|
|
49 | (43) |
|
|
49 | (2) |
|
|
49 | (2) |
|
Silicon wavelength dependence |
|
|
50 | (1) |
|
Silicon temperature dependence |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (18) |
|
|
53 | (1) |
|
3.2.2 1D slab waveguide analytic method |
|
|
53 | (1) |
|
3.2.3 Numerical modelling of waveguides |
|
|
53 | (1) |
|
3.2.4 1D slab numerical |
|
|
54 | (3) |
|
|
55 | (2) |
|
Parameter sweep slab thickness |
|
|
57 | (1) |
|
3.2.5 Effective Index Method |
|
|
57 | (2) |
|
3.2.6 Effective Index Method analytic |
|
|
59 | (1) |
|
3.2.7 Waveguide mode profiles 2D calculations |
|
|
60 | (3) |
|
3.2.8 Waveguide width effective index |
|
|
63 | (2) |
|
3.2.9 Wavelength dependence |
|
|
65 | (1) |
|
3.2.10 Compact models for waveguides |
|
|
66 | (3) |
|
|
69 | (1) |
|
|
69 | (6) |
|
3.3.1 3D FDTD bend simulations |
|
|
70 | (3) |
|
3.3.2 Eigenmode bend simulations |
|
|
73 | (2) |
|
|
75 | (2) |
|
|
77 | (12) |
|
|
89 | (3) |
|
4 Fundamental building blocks |
|
|
92 | (70) |
|
|
92 | (18) |
|
4.1.1 Waveguide mode solver approach |
|
|
93 | (3) |
|
|
94 | (1) |
|
Coupler-length dependence |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (3) |
|
|
99 | (3) |
|
|
102 | (1) |
|
|
102 | (1) |
|
4.1.5 Sensitivity to fabrication |
|
|
103 | (2) |
|
4.1.6 Strip waveguide directional couplers |
|
|
105 | (1) |
|
|
106 | (9) |
|
|
108 | (2) |
|
|
110 | (3) |
|
4.3 MachZehnder interferometer |
|
|
113 | (2) |
|
|
115 | (2) |
|
4.4.1 Optical transfer function |
|
|
115 | (2) |
|
4.4.2 Ring resonator experimental results |
|
|
117 | (1) |
|
4.5 Waveguide Bragg grating filters |
|
|
117 | (26) |
|
|
117 | (3) |
|
Grating coupling coefficient |
|
|
120 | (1) |
|
|
120 | (6) |
|
|
121 | (2) |
|
Grating physical structure design |
|
|
123 | (2) |
|
Modelling gratings using FDTD |
|
|
125 | (1) |
|
4.5.3 Experimental Bragg gratings |
|
|
126 | (4) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
4.5.4 Empirical models for fabricated gratings |
|
|
130 | (7) |
|
Computation lithography models |
|
|
134 | (2) |
|
Additional fabrication considerations |
|
|
136 | (1) |
|
4.5.5 Spiral Bragg gratings |
|
|
137 | (1) |
|
|
138 | (1) |
|
4.5.6 Phase-shifted Bragg gratings |
|
|
138 | (2) |
|
4.5.7 Multi-period Bragg gratings |
|
|
140 | (1) |
|
4.5.8 Grating-assisted contra-directional couplers |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
144 | (15) |
|
|
159 | (3) |
|
|
162 | (53) |
|
5.1 The challenge of optical coupling to silicon photonic chips |
|
|
162 | (1) |
|
|
163 | (19) |
|
|
164 | (1) |
|
|
165 | (3) |
|
|
168 | (13) |
|
Analytic grating coupler design |
|
|
169 | (1) |
|
Design using 2D FDTD simulations |
|
|
170 | (2) |
|
|
172 | (1) |
|
|
173 | (4) |
|
Cladding and buried oxide |
|
|
177 | (2) |
|
Compact design focusing |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
5.2.4 Experimental results |
|
|
181 | (1) |
|
|
182 | (8) |
|
5.3.1 Nano-taper edge coupler |
|
|
183 | (6) |
|
Mode overlap calculation approach |
|
|
183 | (4) |
|
|
187 | (2) |
|
5.3.2 Edge coupler with overlay waveguide |
|
|
189 | (28) |
|
Eigenmode expansion method |
|
|
189 | (1) |
|
|
190 | (3) |
|
|
193 | (1) |
|
|
193 | (18) |
|
|
211 | (4) |
Part III Active components |
|
215 | (96) |
|
|
217 | (42) |
|
6.1 Plasma dispersion effect |
|
|
217 | (1) |
|
6.1.1 Silicon, carrier density dependence |
|
|
217 | (1) |
|
6.2 pn-Junction phase shifter |
|
|
218 | (8) |
|
6.2.1 pn-Junction carrier distribution |
|
|
218 | (3) |
|
6.2.2 Optical phase response |
|
|
221 | (2) |
|
6.2.3 Small-signal response |
|
|
223 | (1) |
|
6.2.4 Numerical TCAD modelling of pn-junctions |
|
|
224 | (2) |
|
6.3 Micro-ring modulators |
|
|
226 | (6) |
|
|
227 | (1) |
|
6.3.2 Small-signal modulation response |
|
|
228 | (3) |
|
6.3.3 Ring modulator design |
|
|
231 | (1) |
|
6.4 Forward-biased PIN junction |
|
|
232 | (2) |
|
6.4.1 Variable optical attenuator |
|
|
232 | (2) |
|
|
234 | (6) |
|
|
235 | (1) |
|
6.5.2 Thermal phase shifter |
|
|
236 | (4) |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
242 | (15) |
|
|
257 | (2) |
|
|
259 | (36) |
|
7.1 Performance parameters |
|
|
259 | (5) |
|
|
259 | (1) |
|
|
260 | (6) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (2) |
|
|
264 | (2) |
|
|
266 | (5) |
|
7.3.1 Photoconductive detector |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
268 | (3) |
|
|
270 | (1) |
|
7.4 Design considerations |
|
|
271 | (4) |
|
7.4.1 PIN junction orientation |
|
|
271 | (1) |
|
|
272 | (1) |
|
|
272 | (1) |
|
|
272 | (1) |
|
|
272 | (1) |
|
|
273 | (2) |
|
|
273 | (1) |
|
|
274 | (1) |
|
7.4.4 External load on the detector |
|
|
275 | (1) |
|
|
275 | (7) |
|
7.5.1 3D FDTD optical simulations |
|
|
276 | (3) |
|
7.5.2 Electronic simulations |
|
|
279 | (3) |
|
|
282 | (1) |
|
|
283 | (9) |
|
|
292 | (3) |
|
|
295 | (16) |
|
|
295 | (1) |
|
|
296 | (3) |
|
|
299 | (2) |
|
|
299 | (1) |
|
8.3.2 External cavity lasers |
|
|
300 | (1) |
|
8.3.3 Etched-pit embedded epitaxy |
|
|
301 | (1) |
|
8.4 Hybrid silicon lasers |
|
|
301 | (2) |
|
|
303 | (3) |
|
8.5.1 IllV Monolithic growth |
|
|
303 | (1) |
|
|
304 | (2) |
|
8.6 Alternative light sources |
|
|
306 | (1) |
|
|
307 | (1) |
|
|
307 | (4) |
Part IV System design |
|
311 | (103) |
|
9 Photonic circuit modelling |
|
|
313 | (36) |
|
9.1 Need for photonic circuit modelling |
|
|
313 | (1) |
|
9.2 Components for system design |
|
|
314 | (1) |
|
|
314 | (4) |
|
9.3.1 Empirical or equivalent circuit models |
|
|
316 | (1) |
|
|
317 | (1) |
|
9.4 Directional coupler compact model |
|
|
318 | (12) |
|
|
318 | (2) |
|
|
320 | (3) |
|
Directional coupler S-parameters |
|
|
321 | (2) |
|
9.4.3 Empirical model polynomial |
|
|
323 | (1) |
|
9.4.4 S-parameter model passivity |
|
|
324 | (6) |
|
|
324 | (1) |
|
|
325 | (5) |
|
9.5 Ring modulator circuit model |
|
|
330 | (1) |
|
9.6 Grating coupler S-parameters |
|
|
330 | (3) |
|
9.6.1 Grating coupler circuits |
|
|
333 | (1) |
|
|
333 | (15) |
|
|
348 | (1) |
|
|
349 | (19) |
|
10.1 Process design kit (PDK) |
|
|
349 | (13) |
|
10.1.1 Fabrication process parameters |
|
|
352 | (1) |
|
Silicon thickness and etch |
|
|
352 | (1) |
|
|
352 | (1) |
|
|
352 | (1) |
|
|
352 | (1) |
|
|
353 | (2) |
|
|
355 | (1) |
|
10.1.5 Schematic-driven layout |
|
|
356 | (4) |
|
10.1.6 Design rule checking |
|
|
360 | (1) |
|
10.1.7 Layout versus schematic |
|
|
361 | (1) |
|
|
362 | (4) |
|
|
362 | (1) |
|
10.2.2 Layout for electrical and optical testing |
|
|
362 | (2) |
|
10.2.3 Approaches for fast GDS layout |
|
|
364 | (1) |
|
10.2.4 Approaches for space-efficient GDS layout |
|
|
364 | (2) |
|
|
366 | (2) |
|
|
368 | (13) |
|
11.1 Fabrication non-uniformity |
|
|
368 | (11) |
|
11.1.1 Lithography process contours |
|
|
369 | (1) |
|
|
370 | (2) |
|
11.1.3 On-chip non-uniformity, experimental results |
|
|
372 | (9) |
|
|
373 | (4) |
|
|
377 | (2) |
|
|
379 | (1) |
|
|
380 | (1) |
|
|
381 | (25) |
|
12.1 Electrical and optical interfacing |
|
|
381 | (8) |
|
12.1.1 Optical interfaces |
|
|
381 | (5) |
|
|
381 | (1) |
|
|
382 | (1) |
|
|
382 | (1) |
|
|
383 | (1) |
|
|
384 | (1) |
|
|
385 | (1) |
|
|
386 | (1) |
|
12.1.2 Electrical interfaces |
|
|
386 | (3) |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
12.2 Automated optical probe stations |
|
|
389 | (9) |
|
|
391 | (2) |
|
|
391 | (1) |
|
|
392 | (1) |
|
|
393 | (1) |
|
|
393 | (1) |
|
|
393 | (1) |
|
|
394 | (3) |
|
Loading and aligning a chip/wafer |
|
|
395 | (1) |
|
|
395 | (1) |
|
|
396 | (1) |
|
|
396 | (1) |
|
12.2.4 Optical test equipment |
|
|
397 | (1) |
|
|
398 | (6) |
|
12.3.1 Optical power budgets |
|
|
400 | (1) |
|
12.3.2 Layout considerations |
|
|
401 | (1) |
|
12.3.3 Design review and checklist |
|
|
402 | (2) |
|
|
404 | (2) |
|
13 Silicon photonic system example |
|
|
406 | (8) |
|
13.1 Wavelength division multiplexed transmitter |
|
|
406 | (6) |
|
13.1.1 Ring-based WDM transmitter architectures |
|
|
406 | (2) |
|
13.1.2 Common-bus WDM transmitter |
|
|
408 | (2) |
|
13.1.3 Mod-Mux WDM transmitter |
|
|
410 | (1) |
|
|
411 | (1) |
|
|
412 | (2) |
Index |
|
414 | |