Atnaujinkite slapukų nuostatas

El. knyga: Single Event Effects in Aerospace

  • Formatas: PDF+DRM
  • Išleidimo metai: 12-Mar-2012
  • Leidėjas: Wiley-IEEE Press
  • Kalba: eng
  • ISBN-13: 9781118084304
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 12-Mar-2012
  • Leidėjas: Wiley-IEEE Press
  • Kalba: eng
  • ISBN-13: 9781118084304
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Single event effects" (SEEs) refers to the radiation effects encountered in space-borne electronic systems that arise through the action of a single ionizing particle as it penetrates sensitive nodes within electronic devices, which can lead to seemingly random errors and even system failures. This volume is presented by Petersen (a consultant formerly with the US Naval Research Laboratory) as a tutorial on the basic terminology and concepts of SEEs and their rate prediction and is based on revised and updated notes for a 2008 NSREC (Nuclear and Space Radiation Effects Conference) Short Course. It describes the foundational issues of the subject, as well as issues that are important for measuring single event upset phenomenon and the interpretation of measurements. Attention is also given to experimental aspects from nuclear physics that are infrequently addressed in electrical engineering courses. Annotation ©2011 Book News, Inc., Portland, OR (booknews.com)

This book introduces the basic concepts necessary to understand Single Event phenomena which could cause random performance errors and catastrophic failures to electronics devices. As miniaturization of electronics components advances, electronics components are more susceptible in the radiation environment. The book includes a discussion of the radiation environments in space and in the atmosphere, radiation rate prediction depending on the orbit to allow electronics engineers to design and select radiation tolerant components and systems, and single event prediction.
1 Introduction 1(12)
1.1 Background,
1(6)
1.2 Analysis of Single Event Experiments,
7(1)
1.2.1 Analysis of Data Integrity and Initial Data Corrections,
7(1)
1.2.2 Analysis of Charge Collection Experiments,
7(1)
1.2.3 Analysis of Device Characteristics from Cross-Section Data,
7(1)
1.2.4 Analysis of Parametric Studies of Device Sensitivity,
8(1)
1.3 Modeling Space and Avionics See Rates,
8(2)
1.3.1 Modeling the Radiation Environment at the Device,
8(1)
1.3.2 Modeling the Charge Collection at the Device,
9(1)
1.3.3 Modeling the Electrical Characteristic and Circuit Sensitivity for Upset,
9(1)
1.4 Overview of this Book,
10(1)
1.5 Scope of this Book,
11(2)
2 Foundations of Single Event Analysis and Prediction 13(64)
2.1 Overview of Single Particle Effects,
13(2)
2.2 Particle Energy Deposition,
15(3)
2.3 Single Event Environments,
18(40)
2.3.1 The Solar Wind and the Solar Cycle,
19(3)
2.3.2 The Magnetosphere, Cosmic Ray, and Trapped Particle Motion,
22(2)
2.3.3 Galactic Cosmic Rays,
24(18)
2.3.4 Protons Trapped by the Earth's Magnetic Fields,
42(4)
2.3.5 Solar Events,
46(2)
2.3.6 Ionization in the Atmosphere,
48(10)
2.4 Charge Collection and Upset,
58(2)
2.5 Effective Let,
60(1)
2.6 Charge Collection Volume and the Rectangular Parallelepiped (RPP),
61(1)
2.7 Upset Cross Section Curves,
62(1)
2.8 Critical Charge,
62(5)
2.8.1 Critical Charge and LET Threshold,
63(1)
2.8.2 Critical Charge of an Individual Transistor, Two Transistors in a Cell,
64(1)
2.8.3 Critical Charge from Circuit Modeling Studies,
65(1)
2.8.4 Sensitivity Distribution Across the Device,
65(1)
2.8.5 Intracell Variation,
66(1)
2.8.6 Summary Discussion of Critical Charge,
66(1)
2.9 Upset Sensitivity and Feature Size,
67(1)
2.10 Cross-Section Concepts,
67(10)
2.10.1 Nuclear Physics Cross-Section Concepts,
67(5)
2.10.2 Single Event Cross-Section Concepts,
72(5)
3 Optimizing Heavy Ion Experiments for Analysis 77(26)
3.1 Sample Heavy Ion Data,
78(1)
3.2 Test Requirements,
78(2)
3.3 Curve Parameters,
80(5)
3.4 Angular Steps,
85(1)
3.5 Stopping Data Accumulation When You Reach the Saturation Cross Section,
86(2)
3.6 Device Shadowing Effects,
88(1)
3.7 Choice of Ions,
89(2)
3.8 Determining the LET in the Device,
91(3)
3.9 Energy Loss Spread,
94(1)
3.10 Data Requirements,
95(2)
3.10.1 Desired Precision,
95(2)
3.10.2 Desired Accuracy,
97(1)
3.11 Experimental Statistics and Uncertainties,
97(1)
3.12 Effect of Dual Thresholds,
98(1)
3.13 Fitting Cross-Section Data,
99(2)
3.14 Other Sources of Error and Uncertainties,
101(2)
4 Optimizing Proton Testing 103(8)
4.1 Monitoring the Beam Intensity and Uniformity,
103(1)
4.2 Total Dose Limitations on Testing,
104(1)
4.3 Shape of the Cross-Section Curve,
105(6)
5 Data Qualification and Interpretation 111(54)
5.1 Data Characteristics,
111(10)
5.1.1 Illegitimate, Systematic, and Random Errors,
111(2)
5.1.2 Inherent Random Errors,
113(4)
5.1.3 Fractional Standard Deviation of Your Data,
117(2)
5.1.4 Rejection of Data,
119(2)
5.2 Approaches to Problem Data,
121(21)
5.2.1 Examination of Systematic Errors,
121(13)
5.2.2 An Example of Voltage Variation,
134(1)
5.2.3 Data Inconsistent with LET,
135(1)
5.2.4 Beam Contamination,
135(3)
5.2.5 No Event Observed,
138(1)
5.2.6 Sloppy or Wrong Fits to the Data,
139(2)
5.2.7 Experiment Monitoring and Planning,
141(1)
5.3 Interpretation of Heavy Ion Experiments,
142(16)
5.3.1 Modification of Effective LET by the Funnel,
142(2)
5.3.2 Effects of True RPP Shape,
144(5)
5.3.3 Fitting Data to Determine Depth and Funnel Length,
149(3)
5.3.4 Deep Device Structures,
152(4)
5.3.5 Cross-Section Curves on Rotated RPP Structures,
156(1)
5.3.6 Charge Gain Effects on Cross Section,
157(1)
5.4 Possible Problems with Least Square Fitting Using the Weibull Function,
158(7)
5.4.1 Multiple Good Fits,
158(4)
5.4.2 Reason for Inconsistent Weibull Fitting,
162(3)
6 Analysis of Various Types of SEU Data 165(86)
6.1 Critical Charge,
165(1)
6.2 Depth and Critical Charge,
166(2)
6.3 Charge Collection Mechanisms,
168(2)
6.3.1 Drift Process and Funneling,
168(1)
6.3.2 Diffusion Process,
168(1)
6.3.3 Plasma Wire Effect,
169(1)
6.3.4 ALPHEN (Alpha-Particle–Source–Drain Penetration Effect),
169(1)
6.3.5 Bipolar Transistor Effect,
169(1)
6.3.6 Recombination Effects,
169(1)
6.4 Charge Collection and the Cross-Section Curve,
170(4)
6.4.1 CMOS,
170(1)
6.4.2 Hardened CMOS,
171(1)
6.4.3 Bipolar Devices,
171(1)
6.4.4 CMOS-SOI,
172(1)
6.4.5 NMOS–Depletion Load,
172(1)
6.4.6 NMOS–Resistive Load,
172(1)
6.4.7 GaAs HFETs,
173(1)
6.4.8 GaAs C-Higfet,
173(1)
6.4.9 VLSI Process Variation,
173(1)
6.5 Efficacy (Variation of SEU Sensitivity within a Cell),
174(11)
6.5.1 Cross-Section and Efficacy Curves,
174(2)
6.5.2 SEU Efficacy as a Function of Area,
176(2)
6.5.3 Efficacy and SEU Sensitivity Derived from a Pulsed Laser SEU Experiment,
178(7)
6.6 Mixed-Mode Simulations,
185(13)
6.6.1 Warren Approach,
186(2)
6.6.2 Dodd Approach,
188(1)
6.6.3 Hirose Approach,
189(1)
6.6.4 Simplified Approach of Fulkerson,
189(1)
6.6.5 The Imax, F (Tmax) Approach,
190(4)
6.6.6 Circuit Level Simulation to Upset Rate Calculations,
194(1)
6.6.7 Multiple Upset Regions,
194(1)
6.6.8 Efficacy and SEU Threshold,
195(2)
6.6.9 From Efficacy to Upset Rates,
197(1)
6.7 Parametric Studies of Device Sensitivity,
198(17)
6.7.1 Data Display and Fitting,
198(4)
6.7.2 Device Parameters and SEU Sensitivity,
202(13)
6.8 Influence of Ion Species and Energy,
215(3)
6.9 Device Geometry and the Limiting Cross Section,
218(2)
6.9.1 Bulk CMOS,
218(1)
6.9.2 CMOS/SOI,
218(1)
6.9.3 SRAMs,
219(1)
6.10 Track Size Effects,
220(1)
6.11 Cross-Section Curves and the Charge Collection Processes,
221(5)
6.11.1 Efficacy Curves and the Charge-Collection Process,
222(3)
6.11.2 Inverse LET Plots and Diffusion,
225(1)
6.12 Single Event Multiple-Bit Upset,
226(20)
6.12.1 Strictly Geometrical MBUs,
227(3)
6.12.2 Proton Induced Multibit Upsets,
230(1)
6.12.3 Dual Hits for Single-Bit Upset,
231(1)
6.12.4 MBU Due to Diffusion in DRAMs,
231(5)
6.12.5 Hits to Adjacent Sensitive Regions,
236(1)
6.12.6 Multibit Upset in FPGAs,
236(1)
6.12.7 Calculation of Upset Rate for Diffusion MBUs,
237(1)
6.12.8 Geometrical MBE Rates in EDAC Words,
238(2)
6.12.9 Statistical MBE Rates in the Space Environment,
240(3)
6.12.10 Impact of Geometrical Errors on System Performance,
243(3)
6.12.11 Statistical MBUs in a Test Environment,
246(1)
6.13 SEU in Logic Systems,
246(3)
6.14 Transient Pulses,
249(2)
7 Cosmic Ray Single Event Rate Calculations 251(54)
7.1 Introduction to Rate Prediction Methods,
252(1)
7.2 The RPP Approach to Heavy Ion Upset Rates,
252(8)
7.3 The Integral RPP Approach,
260(4)
7.4 Shape of the Cross-Section Curve,
264(6)
7.4.1 The Weibull Distribution,
264(2)
7.4.2 Lognormal Distributions,
266(1)
7.4.3 Exponential Distributions,
267(3)
7.5 Assumptions Behind the RPP and IRPP Methods,
270(15)
7.5.1 Device Interaction Models,
270(1)
7.5.2 Critical Charge,
270(1)
7.5.3 Mathematical Basis of Rate Equations,
271(3)
7.5.4 Chord Length Models,
274(2)
7.5.5 Bradford Formulation,
276(3)
7.5.6 Pickel Formulation,
279(1)
7.5.7 Adams Formulation,
280(2)
7.5.8 Formulation of Integral RPP Approach,
282(2)
7.5.9 HICCUP Model,
284(1)
7.5.10 Requirements for Use of IRPP,
285(1)
7.6 Effective Flux Approach,
285(2)
7.7 Upper Bound Approaches,
287(1)
7.8 Figure of Merit Upset Rate Equations,
288(2)
7.9 Generalized Figure of Merit,
290(9)
7.9.1 Correlation of the FOM with Geosynchronous Upset Rates,
291(3)
7.9.2 Determination of Device Parameters,
294(1)
7.9.3 Calculation of the Figure of Merit from Tabulated Parts Characteristics,
295(3)
7.9.4 Rate Coefficient Behind Shielding,
298(1)
7.10 The FOM and the LOG Normal Distribution,
299(1)
7.11 Monte Carlo Approaches,
300(2)
7.11.1 IBM Code,
300(1)
7.11.2 GEANT4,
300(1)
7.11.3 Neutron Induced,
301(1)
7.12 PRIVIT,
302(1)
7.13 Integral Flux Method,
302(3)
8 Proton Single Event Rate Calculations 305(24)
8.1 Nuclear Reaction Analysis,
306(7)
8.1.1 Monte Carlo Calculations,
310(1)
8.1.2 Predictions of Proton Upset Cross Sections Based on Heavy Ion Data,
311(2)
8.2 Semiempirical Approaches and the Integral Cross-Section Calculation,
313(3)
8.3 Relationship of Proton and Heavy Ion Upsets,
316(1)
8.4 Correlation of the FOM with Proton Upset Cross Sections,
317(1)
8.5 Upsets Due to Rare High Energy Proton Reactions,
318(2)
8.6 Upset Due to Ionization by Stopping Protons, Helium, Ions, and Iron Ions,
320(9)
9 Neutron Induced Upset 329(8)
9.1 Neutron Upsets in Avionics,
330(5)
9.1.1 BGR Calculation,
330(1)
9.1.2 Integral Cross-Section Calculation,
331(1)
9.1.3 Figure of Merit Calculation,
332(1)
9.1.4 Upper Bound Approach,
333(1)
9.1.5 Exposure During Flights,
334(1)
9.2 Upsets at Ground Level,
335(2)
10 Upsets Produced by Heavy Ion Nuclear Reactions 337(8)
10.1 Heavy Ion Nuclear Reactions,
337(3)
10.2 Upset Rate Calculations for Combined Ionization and Reactions,
340(2)
10.3 Heavy Nuclear Ion Reactions Summary,
342(3)
11 Samples of Heavy Ion Rate Prediction 345(26)
11.1 Low Threshold Studies,
345(2)
11.2 Comparison of Upset Rates for Weibull and Lognormal Functions,
347(5)
11.3 Low Threshold–Medium Le data,
352(1)
11.4 See Sensitivity and LET Thresholds,
353(7)
11.5 Choosing Area and Depth for Rate Calculations,
360(1)
11.5.1 SOI Devices,
360(1)
11.5.2 Inclusion of Funnel in CREME Calculation,
361(1)
11.6 Running CREME96 Type Codes,
361(6)
11.6.1 CREME96/FLUX,
363(1)
11.6.2 CREME96/TRANS,
364(1)
11.6.3 CREME96/LETSPEC,
364(1)
11.6.4 CREME96/HLTP,
365(1)
11.6.5 CREME96 Results,
366(1)
11.7 CREME-MC and SPENVIS,
367(1)
11.8 Effect of Uncertainties in Cross Section on Upset Rates,
368(3)
12 Samples of Proton Rate Predictions 371(4)
12.1 Trapped Protons,
371(1)
12.2 Correlation of the FOM with Proton Upset Rates,
371(4)
13 Combined Environments 375(14)
13.1 Relative Proton and Cosmic Ray Upset Rates,
375(1)
13.2 Calculation of Combined Rates Using the Figure of Merit,
375(5)
13.3 Rate Coefficients for a Particular New Orbit,
380(1)
13.4 Rate Coefficients for Any Circular Orbit About the Earth,
381(1)
13.5 Ratio of Proton to Heavy Ion Upsets for Near Earth Circular Orbits,
381(2)
13.6 Single Events from Ground to Outer Space,
383(6)
14 Samples of Solar Events and Extreme Situations 389(6)
15 Upset Rates in Neutral Particle Beam (NPB) Environments 395(6)
15.1 Characteristics of NPB Weapons,
395(2)
15.2 Upsets in the NPB Beam,
397(4)
16 Predictions and Observations of SEU Rates in Space 401(28)
16.1 Results of Space Observations,
402(11)
16.2 Environmental Uncertainties,
413(4)
16.3 Examination of Outliers,
417(1)
16.4 Possible Reasons for Poor Upset Rate Predictions,
418(2)
16.5 Constituents of a Good Rate Comparison Paper,
420(5)
16.5.1 Reports on Laboratory and Space Measurements,
421(1)
16.5.2 Analysis of Ground Measurements,
422(1)
16.5.3 Environment for Space Predictions,
422(1)
16.5.4 Upset Rate Calculations,
423(1)
16.5.5 Characteristics of Space Experiment and Data,
424(1)
16.6 Summary and Conclusions,
425(2)
16.7 Recent Comparisons,
427(1)
16.8 Comparisons with Events During Solar Activity,
427(2)
17 Limitations of the IRPP Approach 429(6)
17.1 The IRPP and Deep Devices,
429(1)
17.2 The RPP When Two Hits are Required,
430(1)
17.3 The RPP Approaches Neglect Track Size,
430(1)
17.4 The IRPP Calculates Number of Events, not Total Number of Upsets,
431(1)
17.5 The RPP Approaches Neglect Effects that Arise Outside the Sensitive Volume,
431(1)
17.6 The IRPP Approaches Assume that the Effect of Different Particles with the Same LET is Equivalent,
431(1)
17.7 The IRPP Approaches Assume that the LET of the Particle is not Changing in the Sensitive Volume,
432(1)
17.8 The IRPP Approach Assumes that the Charge Collection Does Not Change with Device Orientation,
433(1)
17.9 The Status of Single Event Rate Analysis,
433(2)
Appendix A Useful Numbers 435(2)
Appendix B Reference Equations 437(8)
Appendix C Quick Estimates of Upset Rates Using the Figure of Merit 445(3)
Appendix D Part Characteristics 448(4)
Appendix E Sources of Device Data 452(3)
References 455(34)
Author Index 489(6)
Subject Index 495
EDWARD PETERSEN, PhD, worked for the Naval Research Laboratory from 1969 to 1993. Since then, he has served as a consultant. Dr. Petersen's research has focused on estimating upset rates for satellite systems. His work has shown that measurements of space upset rates are consistent with predictions based on laboratory experiments. He has authored or coauthored sixty papers on radiation effects, the majority dealing with single event effects. An IEEE Fellow, Dr. Petersen was the recipient of the IEEE Nuclear and Plasma Sciences Society Radiation Effects Award.