Atnaujinkite slapukų nuostatas

El. knyga: Single Piles in Liquefiable Ground: Seismic Response and Numerical Analysis Methods

  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 17-Mar-2016
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662496633
  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 17-Mar-2016
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662496633

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This thesis focuses on the seismic response of piles in liquefiable ground. It describes the design of a three-dimensional, unified plasticity model for large post-liquefaction shear deformation of sand, formulated and implemented for parallel computing. It also presents a three-dimensional, dynamic finite element analysis method for piles in liquefiable ground, developed on the basis of this model,. Employing a combination of case analysis, centrifuge shaking table experiments and numerical simulations using the proposed methods, it demonstrates the seismic response patterns of single piles in liquefiable ground. These include basic force-resistance mode, kinematic and inertial interaction coupling mechanism and major influence factors. It also discusses a beam on the nonlinear Winkler foundation (BNWF) solution and a modified neutral plane solution developed and validated using centrifuge experiments for piles in consolidating and reconsolidating ground. Lastly, it studies axial pile force and settlement during post-earthquake reconsolidation, showing pile axial force to be  irrelevant in the reconsolidation process, while settlement is process dependent.
1 Introduction
1(24)
1.1 Background
1(2)
1.2 Case Histories of Pile Failures in Liquefiable Ground
3(7)
1.2.1 Failure Cases Due to Lateral Effects
3(5)
1.2.2 Failure Cases Due to Vertical Effects
8(2)
1.3 Soil Liquefaction
10(3)
1.3.1 Post-liquefaction Shear Deformation Mechanism
10(1)
1.3.2 Constitutive Modelling of Soil Liquefaction
11(2)
1.4 Seismic Response of Piles in Liquefiable Ground
13(3)
1.4.1 Soil-Pile Kinematic Interaction
13(1)
1.4.2 Structure-Pile Inertial Interaction
14(1)
1.4.3 Coupling of Kinematic and Inertial Interactions
15(1)
1.5 Downdrag of Piles in Consolidating Ground
16(3)
1.5.1 Consolidation Induced Dragload and Downdrag Settlement
16(2)
1.5.2 Post-liquefaction Reconsolidation Induced Dragload and Downdrag Settlement
18(1)
1.6 Scope of Dissertation
19(6)
References
20(5)
2 A Unified Plasticity Model for Large Post-liquefaction Shear Deformation of Sand and Its Numerical Implementation
25(30)
2.1 Model Formulation in Triaxial Stress Space
26(5)
2.1.1 Basic Equations
26(1)
2.1.2 Elastic Moduli
27(1)
2.1.3 State Parameter
27(1)
2.1.4 Plastic Loading and Load Reversal
28(1)
2.1.5 Plastic Modulus
28(1)
2.1.6 Dilatancy
29(1)
2.1.7 Post-liquefaction Shear Deformation
30(1)
2.2 Multiaxial Generalization
31(3)
2.3 Determination of Model Parameters
34(1)
2.4 Model Implementation
35(5)
2.4.1 Numerical Treatment for Zero Effective Stress State
35(1)
2.4.2 Stress Integration Scheme
36(2)
2.4.3 Determination of Projection Point on Maximum Stress Ratio Surface
38(1)
2.4.4 Symmetrisation of the Elastic-Plastic Tangent
39(1)
2.5 Validation of Model Formulation and Implementation
40(11)
2.5.1 Undrained and Drained Triaxial Experiment Simulation
40(1)
2.5.2 Undrained Cyclic Torsional Experiment Simulation
41(2)
2.5.3 VELACS Centrifuge Experiment Simulation
43(8)
2.6 Summary
51(4)
References
51(4)
3 Analysis of Seismic Single Pile Response in Liquefiable Ground
55(36)
3.1 Centrifuge Test on Single Piles in Liquefiable Ground
55(2)
3.2 3D FEM Method for Simulation of Piles in Liquefiable Ground
57(5)
3.3 Test and Simulation Results
62(7)
3.3.1 LCS, Level Ground with Cap and Superstructure
62(2)
3.3.2 ICS, Inclined Ground with Cap and Superstructure
64(3)
3.3.3 LNN and LNS, Level Ground without Cap, without and with Superstructure
67(2)
3.4 Seismic Response of Single Piles in Liquefiable Ground
69(18)
3.4.1 Major Factors Influencing Pile Responses
69(6)
3.4.2 Role of Inertial and Kinematic Effects
75(3)
3.4.3 Coupling of Inertial and Kinematic Effects
78(9)
3.5 Summary
87(4)
References
88(3)
4 Dragload and Downdrag Settlement of Single Piles due to Post-liquefaction Reconsolidation
91(26)
4.1 Calculation Method for Dragload and Downdrag Settlement
91(12)
4.1.1 Fundamental Error in Traditional Neutral Plane Solution
91(1)
4.1.2 Beam on Nonlinear Winkler Foundation Solution
92(7)
4.1.3 Modified Neutral Plane Solution
99(3)
4.1.4 Calculation Method for Post-liquefaction Reconsolidation Process
102(1)
4.2 Method Validation
103(6)
4.2.1 Simulation of Single Pile in Consolidating Soil
103(3)
4.2.2 Simulation of Single Pile in Post-liquefaction Reconsolidating Soil
106(3)
4.3 Dragload and Downdrag Settlement During Reconsolidation
109(5)
4.3.1 Liquefiable Ground Without Non-liquefiable Crust
110(3)
4.3.2 Liquefiable Ground with a Non-liquefiable Crust
113(1)
4.4 Summary
114(3)
References
115(2)
5 Conclusions and Future Work
117
5.1 Conclusions
117(1)
5.2 Future Work
118
The authors research focuses are on geotechnical earthquake engineering, pile foundation, soil liquefaction and constitutive modeling.

Honors Summa cum laude, Ph.D., Beijing 2014 Summa cum laude, Ph.D., Tsinghua University 2014 Outstanding Ph.D. Thesis of Tsinghua University (First Class Award) 2014 Graduate National Scholarship 2012 Scholarship Award for Excellent Doctoral Student, Tsinghua University 2011 National First Class Scholarship (4 times) 2006, 2007, 2008, 2010 Best Paper Award in Geoshanghai 2010 International Conference 2010

Publications

Journal Papers [ 1]Wang R., Zhang J.M., Wang G., 2014. A unified plasticity model for large post-liquefaction shear deformation of sand. Computers and Geotechnics. 59, 54-66. [ 2]Wang R., Zhang J.M., Wang G. Multiaxial Formulation and Numerical Implementation of a Constitutive Model for the Evaluation of Large Liquefaction-induced deformation. China Earthquake Engineering Journal, 2013, 35(1), 91-97. (In Chinese) [ 3]Wang R., Brandenberg S.J., 2013. Beam on nonlinear Winkler foundation and modified neutral plane solution for calculating downdrag settlement. Journal of Geotechnical and Geoenvironmental Engineering. 139 (9), 14331442. [ 4]Zhang G., Wang R., Qian J.Y., Zhang J.M., Qian J.G., 2012. Effect study of cracks on behavior of soil slope under rainfall conditions. Soils and Foundations. 52 (4): 634643. [ 5]Wang R., Zhang J.M., Zhang G. Simplified Analysis Method for Structure-Pile Inertial Interaction in Ground with a Liquefied Top Layer. Rock and Soil Mechanics, 2012, 33(12), 3538-3544. (In Chinese) [ 6]Wang R., Zhang J.M., Zhang G. Centrifuge Shaking Table Test on Single Pile in Lateral Spreading Soil. Engineering Mechanics, 2012, 29(10): 98-105. (In Chinese) [ 7]Wang R., Zhang G., Zhang J.M., 2010. Centrifuge Modelling of Clay Slope with Montmorillonite Weak Layer under Rainfall Conditions. Applied Clay Science. 50, 386-394. [ 8]Zhang G., Qian J.Y., Wang R., Zhang J.M., 2010. Centrifuge model test study of rainfall-induced deformation of cohesive soil slopes. Soils and Foundations. 51 (2). [ 9]Wang R., Zhang G., Zhang J.M., 2010. Centrifuge modeling of rainfall-induced deformation of slopes with weak layers. Chinese Journal of Geotechnical Engineering. 32(10): 1582-1587. (In Chinese)

Conference Papers [ 1]Wang R., Zhang J.M., Zhang G., 2011. Analysis on the Failure of Piles Due to Lateral Spreading. Rock and Soil Mechanics. S1: 501-506. (In Chinese) [ 2]Wang R., Zhang G., Zhang J.M., 2011. Centrifuge Modeling of Rainfall-Induced Layered Soil Slope Failure. Proceedings of the Fifth International Symposium on Deformation Characteristics of Geomaterials, IS SEOUL 2011, September 1~3, 2011, Seoul, Korea, 1070-1073. [ 3]Wang R., Zhang J.M., Zhang G., 2010. Lateral Spreading Ground Displacement Analysis Method in Centrifuge Shaking Table Tests. World Earthquake Engineering. 26S: 225-229. (In Chinese) [ 4]Wang R., Zhang G., Zhang J.M., 2010. Centrifuge Model Tests of Slopes with Weak Layer under Rainfall. ASCE Geotechnical Special Publication No. 202: 159-165 [ 5]Wang R., Zhang G., Zhang J.M., 2010. Centrifuge Model Tests of Slopes with Weak Layer under Rainfall. ASCE Geotechnical Special Publication No. 202: 159-165 [ 6]Chen R. R., Yao Y., Wang R., Zhang J.M., 2014. Three-Dimensional Finite Element Analysis of Underground Structures Dynamic Response in Liquefiable Soil. ASCE Geotechnical Special Publication No. 240: 572-578.

Presentations [ 1]A cyclic model for post-liquefaction deformation and its implementation in OpenSees. The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications, IS-Model 2012, October 15~16, 2012, Beijing, China. [ 2]Beam on nonlinear Winkler foundation and modified neutral plane solution for calculating downdrag settlement. Presentation for Arup Los Angeles office, February 8, 2012,Los Angeles, California, USA. [ 3]Centrifuge Modeling of Rainfall-Induced Layered Soil Slope Failure. The Fifth International Symposium on Deformation Characteristics of Geomaterials, IS-Seoul 2011, September 1~3, 2011, Seoul, Korea. [ 4]Analysis on the Failure of Piles Due to Lateral Spreading. The 7th National Young Geotechnical Mechanics and Engineering Conference, April 15~18, 2011, Beijing, China. (In Chinese) [ 5]Lateral Spreading Ground Displacement Analysis Method in Centrifuge Shaking Table Tests. The 9th National Conference on Soil Dynamics, December 23~25, 2010, Harbin, China. (In Chinese) [ 6]Centrifuge Model Tests of Slopes with Weak Layer under Rainfall. GeoShanghai International Conference 2010, June 3~5, 2010, Shanghai, China.