Atnaujinkite slapukų nuostatas

El. knyga: On Singular Vortex Patches, I: Well-Posedness Issues

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"The purpose of this work is to discuss the well-posedness theory of singular vortex patches. Our main results are of two types: well-posedness and ill-posedness. On the well-posedness side, we show that globally m-fold symmetric vortex patches with corners emanating from the origin are globally well-posed in natural regularity classes as long as m [ greater than or equal to] 3. In this case, all of the angles involved solve a closed ODE system which dictates the global-in-time dynamics of the corners andonly depends on the initial locations and sizes of the corners. Along the way we obtain a global well-posedness result for a class of symmetric patches with boundary singular at the origin, which includes logarithmic spirals. On the ill-posedness side, we show that any other type of corner singularity in a vortex patch cannot evolve continuously in time except possibly when all corners involved have precisely the angle [ pi symbol]/2 for all time. Even in the case of vortex patches with corners of angle [ pi symbol]/2 or with corners which are only locally m-fold symmetric, we prove that they are generically ill-posed. We expect that in these cases of ill-posedness, the vortex patches actually cusp immediately in a self-similar way and we derive some asymptotic models which may be useful in giving a more precise description of the dynamics. In a companion work from 2020 on singular vortex patches, we discuss the long-time behavior of symmetric vortex patches with corners and use them to construct patches on R[ superscript]2 with interesting dynamical behavior such as cusping and spiral formation in infinite time"--
Tarek M. Elgindi, Duke University, Durham, North Carolina.

In-Jee Jeong, Seoul National University, Republic of Korea.