Atnaujinkite slapukų nuostatas

El. knyga: Sintering of Ceramics

4.12/5 (16 ratings by Goodreads)
(University of Missouri-Rolla, USA)
  • Formatas: 388 pages
  • Išleidimo metai: 06-Jul-2007
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781420007053
  • Formatas: 388 pages
  • Išleidimo metai: 06-Jul-2007
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781420007053

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Sintering of Ceramics provides the only comprehensive treatment of the theories and principles of sintering and their application to the production of advanced ceramics with the required target microstructure. Stemming from the authors bestselling text, Ceramic Processing and Sintering, this book includes additional material selected from many sources, providing a single comprehensive volume of all aspects of sintering theory and practice. While the emphasis is on the sintering of ceramics, the book is also useful for the sintering of metals and other materials because of the comprehensive treatment.

Starting with a review of sintering fundamentals such as diffusion and defect chemistry, the book continues with a detailed treatment of solid-state sintering, viscous sintering of amorphous materials, grain growth and microstructural evolution in solid-state materials, and liquid-phase sintering. Special topics include sintering difficulties such as constrained sintering of composites, adherent thin films, and multilayers; solid solution additives and their role in microstructure control, morphological stability of continuous phases and thin films; and sintering with concurrent reaction or crystallization. The treatment concludes with coverage of practical methods for improving sintering techniques, the effects of process variables on sintering behavior, and applications of sintering to the development of advanced ceramics.

Sintering of Ceramics provides an up-to-date text for a senior undergraduate, introductory graduate, or continuing education course in sintering, as well as an ideal reference text for scientists and engineers involved in the research, development, and manufacture of ceramics or powder metallurgy products.

Recenzijos

"This is very well-organized, very well-illustrated and accessible."

In Book News, December 2007

Preface xiii
Author xv
Sintering of Ceramics: Fundamentals
1(44)
Introduction
1(1)
The Sintering Process
1(3)
Characterization of Sintering
3(1)
Approach to Sintering
3(1)
Driving Force for Sintering
4(2)
Surface Curvature
5(1)
Applied Pressure
6(1)
Chemical Reaction
6(1)
Defects in Crystalline Solids
6(13)
Point Defects and Defect Chemistry
7(1)
Kroger-Vink Notation
8(1)
Defect Reactions
8(1)
Defect Concentration
9(2)
Intrinsic Defects
11(1)
Schottky Defect
11(1)
Frenkel Defect
12(1)
Extrinsic Defects
13(1)
Nonstoichiometry
14(1)
Influence of Solutes
15(1)
Brouwer Diagram
16(2)
Defect Chemistry and Sintering
18(1)
Diffusion in Crystalline Solids
19(10)
Diffusion Equations
19(2)
Solutions of the Diffusion Equation
21(1)
Atomistic Diffusion Processes
22(4)
Mechanisms of Diffusion
26(1)
Lattice Diffusion
26(1)
Grain Boundary Diffusion
27(1)
Surface Diffusion
28(1)
Trends in Diffusion Coefficients
28(1)
Types of Diffusion Coefficients
28(1)
The Chemical Potential
29(7)
Chemical Potential of a Mixture of Gases
30(1)
Chemical Potential of Solids and Liquids
31(1)
Chemical Potential of Atoms and Vacancies in a Crystal
31(1)
Chemical Potential of Atoms and Vacancies beneath a Curved Surface
32(2)
Equilibrium Vacancy Concentration beneath a Curved Surface
34(1)
Vapor Pressure over a Curved Surface
35(1)
Diffusional Flux Equations
36(1)
Flux of Atoms
36(1)
Flux of Vacancies
37(1)
Diffusion in Ionic Crystals: Ambipolar Diffusion
37(4)
Concluding Remarks
41(4)
Problems
41(2)
References
43(2)
Solid-State and Viscous Sintering
45(60)
Introduction
45(1)
Mechanisms of Sintering
46(2)
Effects of Grain Boundaries
48(2)
Theoretical Analysis of Sintering
50(1)
Herring's Scaling Law
51(4)
Derivation of the Scaling Law
51(1)
Scaling Law for Lattice Diffusion
52(1)
Application and Limitation of the Scaling Law
53(1)
Relative Rates of Sintering Mechanisms
53(1)
Limitation of the Scaling Law
54(1)
Analytical Models
55(18)
Stages of Sintering
55(1)
Initial Stage
56(1)
Intermediate Stage
56(1)
Final Stage
56(1)
Modeling the Sintering Process
57(1)
Initial Stage Models
57(1)
Geometrical Model
57(1)
Kinetic Equations
58(3)
Summary of the Initial Stage Sintering Equations
61(1)
Limitations of the Initial Stage Sintering Equations
62(1)
Intermediate Stage Models
63(1)
Geometrical Model for Solid-State Sintering
64(1)
Mechanisms
64(1)
Sintering Equations
64(4)
Geometrical Model for Viscous Sintering
68(2)
Final Stage Models
70(1)
Geometrical Model for Solid-State Sintering
70(1)
Sintering Equations
71(1)
Geometrical Model for Viscous Sintering
72(1)
Limitations of the Analytical Models
73(1)
Numerical Simulation of Sintering
73(5)
Numerical Simulation of Solid-State Sintering
74(2)
Numerical Simulation of Viscous Sintering
76(2)
Phenomenological Sintering Equations
78(1)
Sintering Diagrams
79(2)
Construction of the Diagrams
80(1)
Limitations of the Diagrams
81(1)
Sintering with an Externally Applied Pressure
81(8)
Hot Pressing
81(1)
Hot Pressing Models
81(3)
Densification Rate in Hot Pressing
84(1)
Hot Pressing Mechanisms
85(3)
Sinter Forging
88(1)
Hot Isostatic Pressing
88(1)
Stress Intensification Factor and Sintering Stress
89(8)
Stress Intensification Factor
89(2)
Sintering Stress
91(2)
Measurement of the Sintering Stress and Stress Intensification Factor
93(1)
Zero-Creep Technique
93(1)
Loading Dilatometry
93(3)
Sinter Forging Technique
96(1)
Alternative Derivation of the Sintering Equations
97(4)
General Isothermal Sintering Equation
100(1)
General Isothermal Creep Equation for Porous Solids
100(1)
Concluding Remarks
101(4)
Problems
101(1)
References
102(3)
Grain Growth and Microstructure Control
105(72)
Introduction
105(1)
General Features of Grain Growth
106(4)
Grain Growth and Coarsening
106(1)
Occurrence of Grain Growth
106(1)
Driving Force for Grain Growth
107(1)
Normal and Abnormal Grain Growth
107(1)
Importance of Controlling Grain Growth
108(1)
Effect of Grain Size on Properties
108(2)
Attainment of High Density
110(1)
Ostwald Ripening
110(7)
The LSW Theory
112(1)
Ostwald Ripening Controlled by the Interface Reaction
112(2)
Ostwald Ripening Controlled by Diffusion
114(1)
Modifications to the LSW Theory
115(2)
Time-Dependent Ostwald Ripening
117(1)
Topological and Interfacial Tension Requirements
117(2)
Normal Grain Growth in Dense Solids
119(8)
The Model of Burke and Turnbull
119(2)
Mean Field Theories
121(2)
Topological Analysis of Grain Growth
123(2)
Computer Simulation of Normal Grain Growth
125(2)
Abnormal Grain Growth in Dense Solids
127(6)
Causes of Abnormal Grain Growth
128(3)
Application of Controlled Abnormal Grain Growth
131(2)
Grain Growth in Thin Films
133(2)
Mechanisms Controlling the Boundary Mobility
135(9)
Pinning by Fine Second-Phase Particles
135(2)
The Zener Model
137(1)
Computer Simulations of Particle-Inhibited Grain Growth
138(2)
Comparison with Experimental Results
140(1)
Solute Drag
141(3)
Grain Growth and Pore Evolution in Porous Solids
144(16)
Pore Evolution during Sintering
146(2)
Thermodynamic Analysis of Pore Shrinkage
148(4)
Kinetics and Mechanisms of Grain Growth in Porous Solids
152(1)
Grain Growth in Very Porous Solids
152(4)
Grain Growth in Less Porous Solids
156(1)
Pore Mobility
156(3)
Kinetics of Pore-Boundary Interactions
159(1)
Grain Growth Kinetics
160(1)
Simultaneous Densification and Grain Growth
160(8)
Microstructural Maps
162(1)
Brook Model
162(3)
Yan, Cannon, and Chowdhry Model
165(3)
Computer Simulations of Microstructural Evolution
168(1)
Fabrication Principles for Ceramics with Controlled Microstructure
168(3)
Concluding Remarks
171(6)
Problems
171(1)
References
172(5)
Liquid-Phase Sintering
177(54)
Introduction
177(1)
Elementary Features of Liquid-Phase Sintering
178(2)
Enhancement of Densification
178(1)
Driving Force for Densification
179(1)
Formation of the Liquid Phase
179(1)
Microstructures
179(1)
Stages of Liquid-Phase Sintering
180(2)
Thermodynamic and Kinetic Factors
182(10)
Wetting and Spreading of the Liquid
182(2)
Dihedral Angle
184(1)
Liquid Penetration of the Grain Boundary
185(1)
Shape of the Liquid and the Grains
186(1)
Effect of Solubility
187(1)
Capillary Forces
187(4)
Effect of Gravity
191(1)
Grain Boundary Films
192(4)
The Basic Mechanisms of Liquid-Phase Sintering
196(18)
Stage 1: Rearrangement and Liquid Redistribution
197(1)
Liquid Redistribution
197(3)
Particle Rearrangement
200(2)
Stage 2: Solution-Precipitation
202(1)
Densification by Contact Flattening
203(2)
Densification Accompanied by Ostwald Ripening
205(1)
Assessment of the Densification Models
206(1)
Grain Shape Accommodation
206(2)
Coalescence
208(1)
Stage 3: Ostwald Ripening
209(1)
Densification by Pore Filling
209(2)
Microstructural Coarsening
211(3)
Numerical Modeling of Liquid-Phase Sintering
214(1)
Hot Pressing with a Liquid Phase
215(1)
Use of Phase Diagrams in Liquid-Phase Sintering
215(5)
Zinc Oxide
216(1)
Silicon Nitride
217(3)
Activated Sintering
220(1)
Vitrification
221(3)
The Controlling Parameters
222(1)
Vitrification of Silicate Systems
223(1)
Concluding Remarks
224(7)
Problems
226(1)
References
227(4)
Special Topics in Sintering
231(74)
Introduction
231(1)
Inhomogeneities and Their Effects on Sintering
232(8)
Differential Densification
232(2)
Control of Inhomogeneities
234(1)
Correction of Inhomogeneities
234(2)
Shrinkage of Large Pores
236(4)
Constrained Sintering I: Rigid Inclusions
240(18)
Volume Fraction of Inclusions
241(1)
Densification Rate of the Composite and the Matrix
242(1)
The Rule of Mixtures
242(2)
Transient Stresses during Sintering
244(1)
Composite Sphere Model
244(1)
Stress Components
245(1)
Effect of Transient Stresses on Sintering
246(1)
Calculation of Transient Stresses and Strain Rates
247(4)
Percolation and Network Formation
251(2)
The Concept of Percolation
253(1)
Effect of Percolation on Sintering
254(1)
Numerical Simulations
254(1)
Factors Influencing the Sintering of Ceramic Composites
255(3)
Constrained Sintering II: Adherent Thin Films
258(6)
Models for Constrained Sintering of Thin Films
258(2)
Experimental Observations of Sintering of Thin Films
260(2)
Crack Growth and Damage in Constrained Sintering of Films
262(2)
Constrained Sintering III: Multilayers
264(1)
Constitutive Models for Porous Sintering Materials
265(1)
Morphological Stability of Continuous Phases
266(6)
Rayleigh Instability and Microstructural Evolution
267(2)
Morphological Stability of Thin Films
269(3)
Solid Solution Additives and the Sintering of Ceramics
272(10)
Effect of Additives on Kinetic Factors
273(1)
Effect of Additives on Thermodynamic Factors
274(1)
Segregation of Additives
275(1)
Elastic Strain Energy
275(1)
Electrostatic Interaction and the Space Charge Concept
276(4)
The Role of MgO in Al2O3
280(2)
Sintering with Chemical Reaction: Reaction Sintering
282(7)
Influence of Process Variables
284(1)
Particle Size of Reacting Powders
284(1)
Sintering Temperature
284(1)
Applied Pressure
285(1)
Processing Trajectories in Reaction Sintering
285(1)
Experimental Observations of Reaction Sintering
286(3)
Viscous Sintering with Crystallization
289(8)
Effect of Process Variables
290(1)
Viscosity
290(1)
Pore Size
290(1)
Applied Pressure
291(1)
Heating Rate
291(1)
Analysis of Viscous Sintering with Crystallization
291(1)
TTT Diagrams
291(3)
Analysis in Terms of Sintering with Rigid Inclusions
294(2)
Experimental Observations of Sintering with Crystallization
296(1)
Concluding Remarks
297(8)
Problems
297(1)
References
298(7)
Sintering Process Variables and Sintering Practice
305(66)
Introduction
305(1)
Sintering Measurement Techniques
305(4)
Furnaces
306(1)
Shrinkage and Density
307(2)
Grain Size
309(1)
Conventional Sintering
309(39)
Particle and Green Compact Effects
310(1)
Particle Size
310(1)
Particle Size Distribution
310(1)
Particle Shape and Particle Structure
311(1)
Particle Packing
312(2)
Effect of Green Density
314(1)
Anisotropic Sintering Shrinkage
315(1)
Pore Shape Anisotropy
315(3)
Particle Alignment
318(2)
Heating Schedule
320(1)
Stage 1: Binder Burnout
321(1)
Stage 2: Low-Temperature Soak
321(1)
Stage 3: Heat-Up to the Sintering Temperature
321(1)
Stage 4: Isothermal Sintering
321(1)
Stage 5: Annealing
322(1)
Stage 6: Cool-Down to Room Temperature
322(1)
Isothermal Sintering
322(1)
Constant Heating Rate Sintering
323(1)
Effect of Heating Rate on Sintering
323(6)
Master Sintering Curve
329(1)
Multistage Sintering
330(2)
Fast Firing
332(1)
Rate-Controlled Sintering
333(1)
Sintering Atmosphere
334(1)
Gases in Pores
334(4)
Vapor Transport
338(1)
Water Vapor in the Sintering Atmospheres
338(2)
Volatilization and Decomposition
340(2)
Oxidation Number
342(4)
Defect Chemistry and Stoichiometry
346(1)
Production of Controlled Sintering Atmospheres
346(2)
Microwave Sintering
348(9)
Interaction of Microwaves with Matter
349(3)
Microwave Sintering Techniques
352(1)
Microwave Sintering of Ceramics
353(2)
Plasma Sintering
355(1)
Plasma-Assisted Sintering
356(1)
Pressure-Assisted Sintering
357(7)
Hot Pressing
357(2)
Hot Pressing Process Variables
359(1)
Analysis of Hot Pressing Data
359(1)
Reactive Hot Pressing
360(1)
Sinter Forging
361(1)
Hot Isostatic Pressing
361(2)
Hot Isostatic Pressing: Process Variables
363(1)
Concluding Remarks
364(7)
Problems
365(1)
References
366(5)
Appendix A Physical Constants 371(2)
Appendix B SI Units---Names and Symbols 373(2)
Appendix C Conversion of Units 375(2)
Appendix D Ionic Crystal Radii (in units of 10-10 m) 377(2)
Appendix E Density and Melting Point of Some Elements and Ceramics 379(4)
Index 383


University of Missouri-Rolla, USA