Atnaujinkite slapukų nuostatas

El. knyga: In Situ Testing Methods in Geotechnical Engineering

(University of Massachusetts, USA)
  • Formatas: 370 pages
  • Išleidimo metai: 03-May-2021
  • Leidėjas: CRC Press
  • ISBN-13: 9781000380767
  • Formatas: 370 pages
  • Išleidimo metai: 03-May-2021
  • Leidėjas: CRC Press
  • ISBN-13: 9781000380767

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

In Situ Testing Methods in Geotechnical Engineering covers the field of applied geotechnical engineering related to the use of in situ testing of soils to determine soil properties and parameters for geotechnical design. It provides an overview of the practical aspects of the most routine and common test methods, as well as test methods that engineers may wish to include on specific projects. It is suited for a graduate-level course on field testing of soils and will also aid practicing engineers.

Test procedures for determining in situ lateral stress, strength, and stiffness properties of soils are examined, as is the determination of stress history and rate of consolidation. Readers will be introduced to various approaches to geotechnical design of shallow and deep foundations using in situ tests. Importantly, the text discusses the potential advantages and disadvantages of using in situ tests.
Author xv
1 Introduction to In Situ Testing
1(12)
1.1 Introduction
1(1)
1.2 Role of In Situ Testing In Site Investigations
1(1)
1.3 Advantages and Limitations of In Situ Tests
1(5)
1.3.1 Advantages of In Situ Tests
2(1)
1.3.1.1 Testing Soils that are Difficult to Sample
2(1)
1.3.1.2 Determining Soil Properties that are Difficult to Measure by Laboratory Methods
3(1)
1.3.1.3 Testing a Larger Volume of Soil
3(1)
1.3.1.4 Avoiding Difficulties with Sampling and Laboratory Testing
3(1)
1.3.1.5 Obtaining Near Continuous Profiling
3(1)
1.3.1.6 Reduced Testing Time
3(1)
1.3.1.7 Rapid Data Reduction
3(1)
1.3.1.8 Assessing the Influence of Scale or Macro-Fabric on Soil Behavior
4(1)
1.3.1.9 Conducting Tests in a Field Environment
4(1)
1.3.1.10 Cost Savings
4(1)
1.3.2 Limitations of In Situ Tests
4(1)
1.3.2.1 Unknown Boundary Conditions
5(1)
1.3.2.2 Unknown Drainage Conditions
5(1)
1.3.2.3 Unknown Disturbance
5(1)
1.3.2.4 Modes of Deformation and Failure May be Unique
5(1)
1.3.2.5 Strain Rates or Loading Rates are Higher than Laboratory and Full-Scale
5(1)
1.3.2.6 Nature of the Soil Being Tested is Unknown
5(1)
1.3.2.7 Effects of Environment Change on Soil Behavior are Difficult to Assess
6(1)
1.3.2.8 Typical Difficulties with Field Work
6(1)
1.4 Applications of In Situ Tests
6(3)
1.4.1 Stratigraphic Profiling
6(1)
1.4.2 Specific Property Measurement
7(2)
1.4.3 Prototype Modeling
9(1)
1.5 Interpretation of In Situ Test Results
9(2)
1.6 Using In Situ Tests in Design
11(2)
1.6.1 Indirect Design
11(1)
1.6.2 Direct Design
11(1)
References
12(1)
2 Standard Penetration Test (SPT)
13(60)
2.1 Introduction
13(1)
2.2 Background
13(2)
2.3 Mechanics of the Test
15(1)
2.4 Equipment
16(3)
2.4.1 Hammer
16(2)
2.4.2 Drill Rods
18(1)
2.4.3 Split Barrel Sampler
18(1)
2.5 Test Procedures
19(1)
2.6 Factors Affecting Test Results
19(8)
2.6.1 Energy Delivered to the Sampler
19(1)
2.6.2 SPT Hammer Energy Calibration
20(2)
2.6.3 Other Factors Affecting SPT Results
22(1)
2.6.3.1 Diameter of Drill Rods
22(1)
2.6.3.2 Drill Rod Length
22(2)
2.6.3.3 Sampler Dimensions
24(1)
2.6.3.4 Diameter of Borehole
25(1)
2.6.3.5 Method of Drilling/Drilling Fluid
25(1)
2.6.3.6 Cleanout of the Borehole
26(1)
2.6.3.7 Rate of Testing
26(1)
2.6.3.8 Seating of the Spoon
26(1)
2.6.3.9 Condition of the Drive Shoe
27(1)
2.6.3.10 Summary
27(1)
2.7 Corrections to SPT Blow Counts
27(3)
2.7.1 Corrections for Hammer Energy, Equipment, and Drilling: N to N60
28(1)
2.7.2 Correction for Overburden Stress in Sands: N60 to (Nt)60
28(2)
2.8 Interpretation of Soil Properties
30(21)
2.8.1 SPT in Coarse-Grained Soils
30(1)
2.8.1.1 Relative Density
30(2)
2.8.1.2 Friction Angle
32(1)
2.8.1.3 Soil Elastic Modulus
33(1)
2.8.1.4 Constrained Modulus
34(1)
2.8.1.5 Small-Strain Shear Modulus
34(1)
2.8.1.7 Liquefaction Potential
35(4)
2.8.2 SPT in Fine-Grained Soils
39(1)
2.8.2.1 Undrained Shear Strength
39(3)
2.8.2.2 Stress History
42(1)
2.8.2.3 In Situ Lateral Stress
43(1)
2.8.2.4 Soil Elastic Modulus
44(1)
2.8.2.5 Small-Strain Shear Modulus
45(1)
2.8.3 SPT in Soft/Weak Rock
45(6)
2.9 Improvements to SPT Practice
51(5)
2.9.1 SPT-T Test
51(2)
2.9.2 Seismic SPT
53(1)
2.9.3 Measurement of Penetration Record
54(1)
2.9.4 Incremental Penetration Ratio
54(2)
2.9.5 Differential Penetration Record
56(1)
2.10 Large Penetration Test
56(2)
2.11 Becker Penetration Test
58(1)
2.12 SPT in Geotechnical Design
58(2)
2.12.1 Shallow Foundations
59(1)
2.12.2 Deep Foundations
60(1)
2.13 Summary of SPT
60(13)
References
61(12)
3 Dynamic Cone Penetration Test (DCP)
73(30)
3.1 Introduction
73(1)
3.2 Mechanics
73(2)
3.3 Equipment
75(2)
3.4 Test Procedures
77(7)
3.4.1 Light DCP
77(1)
3.4.1.1 Sowers Cone
77(1)
3.4.1.2 ASTM Light "Pavement" DCP
78(2)
3.4.1.3 Mackintosh & JKR Probe
80(1)
3.4.1.4 Lutenegger Drive Cone
81(1)
3.4.2 Medium DCP
81(1)
3.4.3 Heavy DCP
82(1)
3.4.4 Super Heavy DCP
83(1)
3.5 Texas Cone Penetrometer
84(1)
3.6 Swedish Ram Sounding Test
85(1)
3.7 Factors Affecting Test Results
85(1)
3.8 Presentation of Tests Results
86(2)
3.8.1 Incremental Penetration Resistance
86(1)
3.8.2 Cumulative Penetration Resistance
87(1)
3.8.3 Penetration Distance per Hammer Blow
87(1)
3.8.4 Dynamic Penetration Resistance
88(1)
3.9 Interpretation of Test Results
88(5)
3.9.1 Correlations to SPT
88(2)
3.9.2 Correlations to CPT
90(1)
3.9.3 Direct Correlations to Soil Properties
90(1)
3.9.3.1 Relative Density of Sands
90(1)
3.9.3.2 Undrained Shear Strength of Clays
90(1)
3.9.3.3 California Bearing Ratio
91(1)
3.9.3.4 Resilient Modulus
92(1)
3.9.3.5 Compaction Control
92(1)
3.10 Summary OF DCP
93(10)
References
95(8)
4 Cone Penetration (CPT) and Piezocone (CPTU) Tests
103(64)
4.1 Introduction
103(1)
4.2 Mechanics of the Test - CPT/CPTU
103(7)
4.2.1 Mechanical Cones
104(2)
4.2.2 Electric Cones
106(2)
4.2.3 Electric Piezocone
108(2)
4.3 Deploying Cone Penetrometers
110(1)
4.3.1 Self-Contained Truck
111(1)
4.3.2 Drill Rig
111(1)
4.3.3 Light-Duty Trailer
111(1)
4.3.4 Portable Reaction Frame
111(1)
4.4 Test Procedures
111(1)
4.5 Factors Affecting Test Results
112(1)
4.5.1 Cone Design
112(1)
4.5.2 Cone Diameter
112(1)
4.5.3 Rate of Penetration
113(1)
4.5.4 Surface Roughness of Friction Sleeve
113(1)
4.6 Data Reduction and Presentation of Results
113(5)
4.7 Interpretation of Results for Stratigraphy
118(6)
4.7.1 Soil Identification from qc, fs, and Rf
119(1)
4.7.2 Soil Identification from qt Bq, and Rf
120(1)
4.7.3 Soil Identification from Qt, Bq, and Fr
121(1)
4.7.4 Soil Behavioral Type from CPTU, Ic, and ICRW
122(2)
4.8 Interpretation of Test Results in Coarse-Grained Soils
124(12)
4.8.1 Relative Density
124(1)
4.8.2 State Parameter
125(3)
4.8.3 Shear Strength (Drained Friction Angle)
128(1)
4.8.3.1 Φ' from Deep Bearing Capacity Theory
129(1)
4.8.3.2 Φ' from State Parameter
129(1)
4.8.4 Stress History and In Situ Stress
130(1)
4.8.5 Elastic Modulus
130(2)
4.8.6 Constrained Modulus
132(1)
4.8.7 Shear Wave Velocity and Small-Strain Shear Modulus
132(2)
4.8.7.1 Shear Wave Velocity and Shear Modulus from qc
134(1)
4.8.8 Liquefaction Potential
134(2)
4.9 Interpretation of CPT Results in Fine-Grained Soils
136(17)
4.9.1 Undrained Shear Strength
137(1)
4.9.1.1 Su from qc
137(1)
4.9.1.2 Su from qT
138(1)
4.9.1.3 Su from u
138(1)
4.9.1.4 Su from qT and u
139(1)
4.9.1.5 Su from Q
139(1)
4.9.1.6 Su from fs
139(1)
4.9.1.7 Su from σp
140(1)
4.9.2 Sensitivity
140(1)
4.9.3 Stress history - Preconsolidation Stress, σp
141(1)
4.9.3.1 σp from qc
141(1)
4.9.3.2 σp from qt
142(1)
4.9.3.3 σp from δu
142(3)
4.9.3.4 σp from qt, and u
145(1)
4.9.4 Stress History - OCR
145(1)
4.9.4.1 OCR from qc
145(1)
4.9.4.2 OCR from qt, and u
145(1)
4.9.4.3 OCR from Pore Pressure Difference
146(1)
4.9.5 In Situ Lateral Stress
146(1)
4.9.5.1 K0 from OCR
146(1)
4.9.5.2 Empirical Correlations to qt, and δu
146(1)
4.9.6 Shear Wave Velocity and Small-Strain Shear Modulus
146(1)
4.9.6.1 Shear Wave Velocity from qc and qt
146(2)
4.9.6.2 Shear Wave Velocity from fs
148(1)
4.9.6.3 Shear Modulus from qc and qt
148(1)
4.9.7 Constrained Modulus
148(1)
4.9.8 Coefficient of Consolidation
149(3)
4.9.9 Hydraulic Conductivity
152(1)
4.10 Advantages and Limitations of CPT/CPTU
153(1)
4.11 CPT-SPT Correlations
153(3)
4.12 CPT/CPTU in Foundation Design
156(3)
4.12.1 Shallow Foundations
156(1)
4.12.2 Deep Foundations
157(2)
4.13 Summary of CPT/CPTU
159(8)
References
159(8)
5 Field Vane Test (FVT)
167(28)
5.1 Introduction
167(1)
5.2 Mechanics
167(1)
5.3 Equipment
168(4)
5.3.1 Unprotected Vane Through Casing
168(1)
5.3.2 Protected Rods and Unprotected Vane
169(1)
5.3.3 Protected Rods and Protected Vane
169(1)
5.3.4 Unprotected Rods and Unprotected Vane with Slip Coupling
170(1)
5.3.5 Vanes
170(2)
5.4 Test Procedures
172(1)
5.5 Factors Affecting Test Results
173(8)
5.5.1 Installation Effects
173(1)
5.5.1.1 Disturbance
173(2)
5.5.1.2 Insertion Pore Water Pressures
175(1)
5.5.2 Delay (Consolidation) Time
176(1)
5.5.3 Rate of Shearing
177(1)
5.5.4 Progressive Failure
178(2)
5.5.5 Vane Size
180(1)
5.5.6 Vane Shape
180(1)
5.6 Interpretation of Undrained Strength from FVT
181(1)
5.7 Anisotropic Analysis
182(1)
5.8 Measuring Postpeak Strength
183(1)
5.9 Field Vane Correction Factors
184(4)
5.10 Interpretation of Stress History from FVT
188(2)
5.11 Summary of FVT
190(5)
References
190(5)
6 Dilatometer Test (DMT)
195(60)
6.1 Introduction
195(1)
6.2 Mechanics
195(1)
6.3 Equipment
195(1)
6.4 Test Procedure
196(5)
6.4.1 Lift-off Pressure
197(3)
6.4.2 1 mm Expansion Pressure
200(1)
6.4.3 Recontact Pressure
201(1)
6.5 Data Reduction
201(7)
6.5.1 Lift-off and Penetration Pore Pressures
202(2)
6.5.2 1 mm Expansion Pressure
204(3)
6.5.3 Recontact Pressure
207(1)
6.6 Presentation of Test Results
208(3)
6.7 Interpretation of Test Results
211(31)
6.7.1 Evaluating Stratigraphy
211(2)
6.7.2 Interpretation of DMT Results in Fine-Grained Soils
213(1)
6.7.2.1 Undrained Shear Strength
213(5)
6.7.2.2 Stress History - OCR
218(4)
6.7.2.3 Preconsolidation Stress
222(1)
6.7.2.4 Lateral Stresses
223(3)
6.7.2.5 Constrained Modulus
226(2)
6.7.2.6 Elastic Modulus
228(1)
6.7.2.7 Small-Strain Shear Modulus
229(1)
6.7.2.8 Liquidity Index
230(1)
6.7.2.9 California Bearing Ratio
230(1)
6.7.2.10 Coefficient of Consolidation
230(4)
6.7.3 Interpretation of DMT Results in Coarse-Grained Soils
234(1)
6.7.3.1 Relative Density (Dr)
235(1)
6.7.3.2 State Parameter
236(1)
6.7.3.3 Drained Friction Angle
236(1)
6.7.3.4 In Situ Stresses
237(1)
6.7.3.5 Stress History
238(1)
6.7.3.6 Constrained Modulus
238(1)
6.7.3.7 Elastic Modulus
239(1)
6.7.3.8 Small-Strain Shear Modulus
240(1)
6.7.3.9 Coefficient of Subgrade Reaction
241(1)
6.7.3.10 Liquefaction Potential
241(1)
6.8 Seismic Dilatometer
242(2)
6.9 Design Applications
244(1)
6.10 Summary of DMT
245(10)
References
245(10)
7 Pressuremeter Test (PMT)
255(36)
7.1 Introduction
255(1)
7.2 Mechanics of the Test
256(1)
7.3 Pressuremeter Equipment
256(8)
7.3.1 Prebored Pressuremeters
257(1)
7.3.1.1 Tri-Cell Probe
258(1)
7.3.1.2 Mono-Cell Probe
259(3)
7.3.2 Self-Boring Pressuremeters
262(1)
7.3.3 Full-Displacement (Cone) Pressuremeters
263(1)
7.3.4 Push-in Pressuremeter
264(1)
7.4 Creating a Borehole for the PMT
264(2)
7.5 Test Procedures
266(1)
7.5.1 Test Procedure A - Equal-Pressure Increment Method
266(1)
7.5.2 Test Procedure B - Equal-Volume Increment Method
267(1)
7.5.3 Continuous Loading Tests
267(1)
7.5.4 Holding Tests
267(1)
7.6 Data Reduction
267(6)
7.6.1 Corrected Pressure-Volume Curve
267(1)
7.6.1.1 Initial Pressure, Po
268(1)
7.6.1.2 Creep Pressure, Pf
268(1)
7.6.1.3 Limit Pressure, PL
269(1)
7.6.1.4 Net Limit Pressure, PL*
270(1)
7.6.1.5 Pressuremeter Modulus, Em
270(1)
7.6.1.6 Unload-Reload Modulus, EVR
271(1)
7.6.2 Creep Curve
271(1)
7.6.3 Relationships Between PMT Parameters
272(1)
7.7 Factors Affecting Test Results
273(3)
7.7.1 Method of Installation
274(1)
7.7.2 Calibration of Membrane
275(1)
7.7.3 Volume Losses
276(1)
7.7.4 Geometry of Cutter (SBPMT)
276(1)
7.7.5 Rate of Installation (SBPMT)
276(1)
7.8 Interpretation of Tests Results in Fine-Grained Soils
276(4)
7.8.1 In Situ Horizontal Stress
277(1)
7.8.2 Undrained Shear Strength
277(1)
7.8.2.1 Theoretical Evaluation
277(1)
7.8.2.2 Empirical Approach
278(2)
7.8.3 Preconsolidation Stress
280(1)
7.8.4 Small-Strain Shear Modulus
280(1)
7.9 Interpretation of Test Results in Coarse-Grained Soils
280(1)
7.10 Pressuremeter Testing in Rock
280(1)
7.11 Correlations with Other In Situ Tests
281(1)
7.12 Applications to Design
281(3)
7.12.1 Design of Shallow Foundations
282(1)
7.12.1.1 Bearing Capacity
282(1)
7.12.1.2 Settlement
282(2)
7.12.2 Deep Foundations
284(1)
7.12.2.1 Ultimate Axial Load of Deep Foundations
284(1)
7.12.2.2 Laterally Loaded Shafts and Piles
284(1)
7.13 Summary of PMT
284(7)
References
285(6)
8 Borehole Shear Test (BST)
291(16)
8.1 Introduction
291(1)
8.2 Mechanics
291(1)
8.3 Equipment
291(3)
8.3.1 Shear Head
293(1)
8.3.2 Control Console
293(1)
8.3.3 Shear Force Reaction Base Plate
293(1)
8.4 Test Procedures
294(3)
8.4.1 Multistage Testing
294(2)
8.4.2 Single-Stage "Fresh" Testing
296(1)
8.5 Borehole Preparation
297(1)
8.6 Interpretation of Test Results
298(1)
8.7 Range of Soil Applicability
298(1)
8.8 Factors Affecting Test Results
299(1)
8.9 Interface Shear Tests
299(2)
8.10 Comparison with Laboratory Tests
301(1)
8.11 Equipment Modifications
301(1)
8.12 Applications of BST for Design
302(1)
8.13 Advantages and Limitations
302(1)
8.13.1 Advantages
302(1)
8.13.2 Limitations
303(1)
8.14 Summary of BST
303(4)
References
304(3)
9 Plate Load Test (PLT) and Screw Plate Load Test (SPLT)
307(26)
9.1 Introduction
307(1)
9.2 Plate Load Test
308(5)
9.2.1 Equipment
308(1)
9.2.2 Test Procedures
308(3)
9.2.2.1 Tests on the Ground Surface
311(1)
9.2.2.2 Tests in an Excavation/Test Pit
311(1)
9.2.2.3 Tests in Lined Borings
311(1)
9.2.2.4 Horizontal Plate Load Tests
312(1)
9.3 Screw Plate Tests
313(2)
9.3.1 Equipment
313(1)
9.3.2 Test Procedures
314(1)
9.4 Presentation of Test Results
315(1)
9.5 Interpretation of Results
315(11)
9.5.1 Subgrade Reaction Modulus
317(2)
9.5.2 Elastic Modulus
319(1)
9.5.2.1 Plate Load Test
319(1)
9.5.2.2 Screw Plate Test
320(2)
9.5.3 Shear Modulus
322(1)
9.5.4 Undrained Shear Strength of Clays
322(2)
9.5.5 Coefficient of Consolidation
324(2)
9.6 Plate Load as a Prototype Footing
326(2)
9.7 Summary of PLT and SPLT
328(5)
References
328(5)
10 Other In Situ Tests
333(20)
10.1 Introduction
333(1)
10.2 Large-Scale In-Place Shear Box Tests
333(3)
10.2.1 Background
333(1)
10.2.2 Test Equipment
334(2)
10.2.3 Test Procedures
336(1)
10.2.4 Results and Interpretation
336(1)
10.3 Hydraulic Fracture Tests (HFTs)
336(7)
10.3.1 Background
336(1)
10.3.2 Test Equipment
337(1)
10.3.2.1 Tests with Push-in Piezometer
337(1)
10.3.2.2 Tests in an Open Borehole
338(1)
10.3.3 Test Procedures
338(1)
10.3.4 Results and Interpretation
339(4)
10.4 Push-in Earth Pressure Cells
343(10)
10.4.1 Background
343(1)
10.4.2 Test Equipment
344(2)
10.4.3 Test Procedures
346(1)
10.4.4 Results and Interpretation
346(3)
References
349(4)
Index 353
Dr Alan J. Lutenegger is Emeritus Professor of Geotechnical Engineering at the University of Massachusetts-Amherst, USA.