Atnaujinkite slapukų nuostatas

El. knyga: Smart Electronic Systems: Heterogeneous Integration of Silicon and Printed Electronics

  • Formatas: PDF+DRM
  • Išleidimo metai: 06-Sep-2018
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527691715
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 06-Sep-2018
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527691715
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Unique in focusing on both organic and inorganic materials from a system point of view, this text offers a complete overview of printed electronics integrated with classical silicon electronics. Following an introduction to the topic, the book discusses the materials and processes required for printed electronics, covering conducting, semiconducting and insulating materials, as well as various substrates, such as paper and plastics. Subsequent chapters describe the various building blocks for printed electronics, while the final part describes the resulting novel applications and technologies, including wearable electronics, RFID tags and flexible circuit boards. Suitable for a broad target group, both industrial and academic, ranging from mechanical engineers to ink developers, and from chemists to engineers.
Preface xi
Acknowledgment xiii
Part I Materials and Processes for Printed Electronics
1(52)
1 Introduction
3(8)
1.1 Connected Smart World
3(1)
1.2 Smart Electronic Systems
4(2)
1.3 Overview of the Book
6(2)
References
8(3)
2 Functional Electronic Inks
11(42)
2.1 Introduction
11(6)
2.1.1 Printing Technologies
11(1)
2.1.1.1 Screen Printing
11(1)
2.1.1.2 Gravure Printing
12(1)
2.1.1.3 Flexographic Printing
12(1)
2.1.1.4 Offset Printing
13(1)
2.1.1.5 Inkjet Printing
13(2)
2.1.1.6 Aerosol Printing
15(1)
2.1.2 Fluid Requirements for Inkjet Inks
15(1)
2.1.2.1 Boiling Point
16(1)
2.1.2.2 Surface Tension
16(1)
2.1.2.3 Viscosity
16(1)
2.1.2 A Particle Size
17(1)
2.2 Conductive Inks
17(16)
2.2.1 Metallic Nanoparticle Inks
17(3)
2.2.2 Functionalized Multiwalled Carbon Nanotube (f-MWCNT) Inks
20(1)
2.2.2.1 Introduction
20(1)
2.2.2.2 MWCNT Ink Formulation
21(2)
2.2.2.3 Resistance Characterization
23(2)
2.2.3 MWCNT/Polyaniline Composite Inks
25(1)
2.2.3.1 Introduction
25(1)
2.2.3.2 Composite Synthesis
26(2)
2.2.3.3 Characterization of Water-dispersible MWCNT/PANI Composite
28(5)
2.3 Semiconductor Inks
33(10)
2.3.1 Organic Semiconductor Inks
33(3)
2.3.2 Single-walled Carbon Nanotube (SWCNT) Inks
36(1)
2.3.2.1 SWCNTs in Organic Solvents
37(1)
2.3.2.2 SWCNTs in Water
38(1)
2.3.2.3 SWCNT/Polymer Composite
39(3)
2.3.3 SWCNT/Polymer Composites Inks
42(1)
2.4 Summary
43(1)
References
43(10)
Part II Printed Electronic Building Blocks
53(130)
3 Printed Thin-film Transistors (TFTs) and Logic Circuits
55(36)
3.1 Introduction
55(5)
3.1.1 TFTs Versus Silicon MOSFETs
55(1)
3.1.2 State-of-the-art TFT Technologies
56(2)
3.1.3 New TFT Technologies
58(2)
3.2 TFT Structure and Operation
60(4)
3.2.1 TFT Architectures
60(2)
3.2.2 Electrical Characteristics of TFTs
62(1)
3.2.2.1 Carrier Mobility (μ)
62(1)
3.2.2.2 On/Off Ratio (Ion/Ioff)
63(1)
3.2.2.3 Threshold Voltage (Vt)
63(1)
3.2.2.4 Sub-threshold Swing (SS)
64(1)
3.3 Printed TFTs: an Overview
64(7)
3.4 Carbon Nanotube (CNT)-network TFTs
71(11)
3.4.1 Challenges in CNT-network TFTs
71(2)
3.4.2 Percolation Transport in Nanotube Networks
73(2)
3.4.3 Solution-process Fabrication of CNT-TFTs
75(1)
3.4.4 Electrical Performance Enhancement in CNT-TFTs
76(1)
3.4.4.1 Hysteresis Suppression
76(3)
3.4.4.2 High μ and Large Ion/Ioff
79(2)
3.4.4.3 Uniformity and Scalability
81(1)
3.4.4.4 Ambient and Operational Stabilities
81(1)
3.5 Logic Circuits Based on CNT-TFTs
82(2)
3.6 Summary
84(1)
References
85(6)
4 Printed Passive Wireless Sensors
91(34)
4.1 Introduction
91(1)
4.2 Sensing Materials
92(7)
4.2.1 Carbon Nanotube-based Sensors
92(1)
4.2.2 Functionalized Multiwalled Carbon Nanotubes as Humidity Sensing Material
93(1)
4.2.2.1 Humidity Sensing Properties
94(2)
4.2.2.2 Humidity Sensing Mechanism
96(2)
4.2.2.3 Mechanical Flexibility
98(1)
4.3 Passive UHF Wireless Sensor
99(9)
4.3.1 Flexible UHF Humidity Sensor Based on Carbon Nanotube
99(1)
4.3.1.1 Sensor Operation Principle
99(1)
4.3.1.2 Flexible Humidity Sensor Demonstration
100(1)
4.3.2 Sensor Optimization: Influence of Resistor-electrode Structure
101(3)
4.3.3 Analytical Model of Interdigital Electrode Capacitance
104(1)
4.3.3.1 Interdigital Electrode and Interdigital Capacitance
104(1)
4.3.3.2 Modified Analytical Models of IDCs
105(3)
4.4 Passive UWB Wireless Sensor
108(10)
4.4.1 Sensor Operation Principle
108(1)
4.4.2 Theoretical Analysis and Data-processing Algorithm
109(1)
4.4.2.1 Theoretical Analysis
109(2)
4.4.2.2 Data-processing Algorithm
111(1)
4.4.3 Sensor Prototype
112(2)
4.4.4 Inkjet Printing of Coplanar Waveguide: Variable Ink-layer Thickness Approach
114(1)
4.4.4.1 Introduction
114(1)
4.4.4.2 Variable Ink-layer Thickness Approach
115(3)
4.5 Summary
118(1)
References
119(6)
5 Printed RFID Antennas
125(32)
5.1 Introduction
125(1)
5.1.1 Evolution of RFID-enabled Ubiquitous Sensing
126(1)
5.2 Future Trends and Challenges
126(1)
5.2.1 Design Challenges for RFID Tag Antennas
127(1)
5.3 RFID Antennas: Narrow Band
127(6)
5.3.1 Progressive Meander Line Antennas
127(1)
5.3.1.1 Antennas Design Evolution and Geometry
128(3)
5.3.1.2 Antenna Fabrication Parameters
131(1)
5.3.1.3 Parametric Analysis
132(1)
5.4 RFID Antennas: Wideband
133(10)
5.4.1 Bowtie Antenna: Rounded Corners with T-matching
133(1)
5.4.1.1 Antenna Dimensions and Parametric Optimization
133(1)
5.4.1.2 Field and Circuit Concepts Parametric Analysis
134(3)
5.4.2 Bowtie Antenna: Square Hole-matching Technique
137(1)
5.4.2.1 Antenna Design Numerical Analysis and Optimization
138(1)
5.4.2.2 Effective Aperture of Antenna
138(2)
5.4.2.3 Results, Discussion, and Analysis
140(3)
5.5 RFID Antennas: Sensor Enabled
143(9)
5.5.1 Archimedean Spiral Antenna
143(2)
5.5.1.1 Manufacturing Parametric Analysis
145(2)
5.5.1.2 Parametric Analysis of Field and Circuit Concepts
147(2)
5.5.2 RFID Antenna with Embedded Sensor and Calibration Functions
149(3)
5.5.2.1 Antenna as a Sensor Design ISO
5.6 Summary
152(1)
References
152(5)
6 Printed Chipless RFID Tags
157(26)
6.1 Introduction
157(5)
6.1.1 RFID History
157(1)
6.1.2 RFID System
158(3)
6.1.3 RFID Advantages
161(1)
6.1 A RFID Applications
162(4)
6.1.4.1 Logistics
162(1)
6.1.4.2 Healthcare
163(1)
6.1.4.3 Retail
163(1)
6.1.4.4 Manufacturing
163(1)
6.1.4.5 Transportation
163(1)
6.1.4.6 Agriculture
163(1)
6.1.5 RFID Challenges
164(2)
6.2 Time-domain-based RFID Tags
166(5)
6.3 Frequency-domain-based RFID Tags
171(1)
6.4 Printing of Chipless RFID Tags
172(6)
6.4.1 Printing of Time-domain RFID Tags
172(3)
6.4.2 Printing of Frequency Domain Chipless RFID Tags
175(3)
6.5 Summary
178(2)
6.5.1 Large Coding Capacity
179(1)
6.5.2 Compact Size
179(1)
6.5.3 Configurability
179(1)
References
180(3)
Part III System Integration for Printed Electronics
183(86)
7 Heterogeneous Integration of Silicon and Printed Electronics
185(20)
7.1 Introduction
185(1)
7.2 Inkjet-printed Interconnections
186(6)
7.2.1 Inkjet Printing Technology
186(2)
7.2.2 Electrical Performance and Morphology
188(3)
7.2.3 Reliability Evaluation in 85°C/85% RH Ambient
191(1)
7.3 Heterogeneous Integration
192(9)
7.3.1 Introduction of Traditional Integration Approach
192(2)
7.3.2 Heterogeneous Integration Process
194(4)
7.3.3 Electrical Performance of Heterogeneous Interconnects
198(2)
7.3.4 Bendability of Heterogeneous Interconnects
200(1)
7.4 Summary
201(1)
References
201(4)
8 Intelligent Packaging: Humidity Sensing System
205(16)
8.1 Introduction
205(2)
8.2 Plastic-based Humidity Sensor Box Prototype
207(3)
8.2.1 Architecture of Humidity Sensor Box
207(1)
8.2.2 f-MWCNT-based Resistive Humidity Sensor
208(1)
8.2.3 System Integration
208(2)
8.3 Paper-based Humidity Sensor Card Prototype
210(8)
8.3.1 Fatigue of Interconnects versus Bending and Folding
211(1)
8.3.1.1 Sample Fabrication and Experimental Setups
211(1)
8.3.1.2 Fatigue Test Results and Discussion
212(3)
8.3.2 Bendability of the Humidity Sensor
215(2)
8.3.3 Demonstration of Humidity Sensor Cards
217(1)
8.4 Summary
218(1)
References
218(3)
9 Wearable Healthcare Device: Bio-Patch
221(22)
9.1 Introduction
221(1)
9.2 System Overview
222(8)
9.2.1 Bio-signals
223(2)
9.2.2 Customized Bio-sensing Chip
225(1)
9.2.3 Inkjet-printed Electrodes
226(4)
9.3 Paper-based Bio-Patch
230(1)
9.4 Polyimide-based Multi-channel Bio-Patch
230(4)
9.5 Polyimide-based Miniaturized Bio-Patch
234(5)
9.6 Summary
239(1)
References
239(4)
10 Life Cycle Assessment (LCA) for Printed Electronics
243(26)
10.1 Introduction
243(3)
10.2 Analysis Methodology
246(6)
10.3 Environmental Footprint
252(6)
10.4 Sustainable Production of Polymer- and Paper-based RFID Antennas
258(6)
10.5 Summary
264(1)
References
265(4)
Index 269
Li-Rong Zheng is professor in Media Electronics at the Swedish Royal Institute of Technology (KTH) in Stockholm, Sweden, as well as founder and director of iPack VINN Excellence Center. Since 2010, he holds the position as a distinguished professor and director of ICT School at the Fudan University in Shanghai, China. His research interests include electronic circuits, wireless sensors, systems for ambient intelligence and the internet-of-things. In 2001, he received his Ph.D. degree in electronic system design from the Swedish Royal Institute of Technology (KTH) in Stockholm, Sweden. He has authored more than 400 scientific publications. He is member of the steering board of the International Conference on Internet-of-Things.

Hannu Tenhunen is professor at the Swedish Royal Institute of Technology (KTH) in Stockholm, Sweden, and holds invited and honorary professorships in Finland, USA, France, China and Hong Kong. During the last 20 years he has been actively involved in high technology policies, technology impact studies, innovations and changing the educational system. For instance, he was director of various European graduate schools and he was Education Director of the new European flagship initiative European Institute of Technology and Innovations (EIT) and the Knowledge and Innovation Community: EIT ICT Labs. He has authored more than 700 scientific publications and holds 9 patents. Furthermore, he was one of the originators of the interconnect-centric design, globally asynchronous/locally synchronous concept and network-on-chip (NoC) paradigms.