Preface |
|
xi | |
Acknowledgment |
|
xiii | |
|
Part I Materials and Processes for Printed Electronics |
|
|
1 | (52) |
|
|
3 | (8) |
|
1.1 Connected Smart World |
|
|
3 | (1) |
|
1.2 Smart Electronic Systems |
|
|
4 | (2) |
|
|
6 | (2) |
|
|
8 | (3) |
|
2 Functional Electronic Inks |
|
|
11 | (42) |
|
|
11 | (6) |
|
2.1.1 Printing Technologies |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
2.1.1.3 Flexographic Printing |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (2) |
|
|
15 | (1) |
|
2.1.2 Fluid Requirements for Inkjet Inks |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (16) |
|
2.2.1 Metallic Nanoparticle Inks |
|
|
17 | (3) |
|
2.2.2 Functionalized Multiwalled Carbon Nanotube (f-MWCNT) Inks |
|
|
20 | (1) |
|
|
20 | (1) |
|
2.2.2.2 MWCNT Ink Formulation |
|
|
21 | (2) |
|
2.2.2.3 Resistance Characterization |
|
|
23 | (2) |
|
2.2.3 MWCNT/Polyaniline Composite Inks |
|
|
25 | (1) |
|
|
25 | (1) |
|
2.2.3.2 Composite Synthesis |
|
|
26 | (2) |
|
2.2.3.3 Characterization of Water-dispersible MWCNT/PANI Composite |
|
|
28 | (5) |
|
|
33 | (10) |
|
2.3.1 Organic Semiconductor Inks |
|
|
33 | (3) |
|
2.3.2 Single-walled Carbon Nanotube (SWCNT) Inks |
|
|
36 | (1) |
|
2.3.2.1 SWCNTs in Organic Solvents |
|
|
37 | (1) |
|
|
38 | (1) |
|
2.3.2.3 SWCNT/Polymer Composite |
|
|
39 | (3) |
|
2.3.3 SWCNT/Polymer Composites Inks |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (10) |
|
Part II Printed Electronic Building Blocks |
|
|
53 | (130) |
|
3 Printed Thin-film Transistors (TFTs) and Logic Circuits |
|
|
55 | (36) |
|
|
55 | (5) |
|
3.1.1 TFTs Versus Silicon MOSFETs |
|
|
55 | (1) |
|
3.1.2 State-of-the-art TFT Technologies |
|
|
56 | (2) |
|
3.1.3 New TFT Technologies |
|
|
58 | (2) |
|
3.2 TFT Structure and Operation |
|
|
60 | (4) |
|
|
60 | (2) |
|
3.2.2 Electrical Characteristics of TFTs |
|
|
62 | (1) |
|
3.2.2.1 Carrier Mobility (μ) |
|
|
62 | (1) |
|
3.2.2.2 On/Off Ratio (Ion/Ioff) |
|
|
63 | (1) |
|
3.2.2.3 Threshold Voltage (Vt) |
|
|
63 | (1) |
|
3.2.2.4 Sub-threshold Swing (SS) |
|
|
64 | (1) |
|
3.3 Printed TFTs: an Overview |
|
|
64 | (7) |
|
3.4 Carbon Nanotube (CNT)-network TFTs |
|
|
71 | (11) |
|
3.4.1 Challenges in CNT-network TFTs |
|
|
71 | (2) |
|
3.4.2 Percolation Transport in Nanotube Networks |
|
|
73 | (2) |
|
3.4.3 Solution-process Fabrication of CNT-TFTs |
|
|
75 | (1) |
|
3.4.4 Electrical Performance Enhancement in CNT-TFTs |
|
|
76 | (1) |
|
3.4.4.1 Hysteresis Suppression |
|
|
76 | (3) |
|
3.4.4.2 High μ and Large Ion/Ioff |
|
|
79 | (2) |
|
3.4.4.3 Uniformity and Scalability |
|
|
81 | (1) |
|
3.4.4.4 Ambient and Operational Stabilities |
|
|
81 | (1) |
|
3.5 Logic Circuits Based on CNT-TFTs |
|
|
82 | (2) |
|
|
84 | (1) |
|
|
85 | (6) |
|
4 Printed Passive Wireless Sensors |
|
|
91 | (34) |
|
|
91 | (1) |
|
|
92 | (7) |
|
4.2.1 Carbon Nanotube-based Sensors |
|
|
92 | (1) |
|
4.2.2 Functionalized Multiwalled Carbon Nanotubes as Humidity Sensing Material |
|
|
93 | (1) |
|
4.2.2.1 Humidity Sensing Properties |
|
|
94 | (2) |
|
4.2.2.2 Humidity Sensing Mechanism |
|
|
96 | (2) |
|
4.2.2.3 Mechanical Flexibility |
|
|
98 | (1) |
|
4.3 Passive UHF Wireless Sensor |
|
|
99 | (9) |
|
4.3.1 Flexible UHF Humidity Sensor Based on Carbon Nanotube |
|
|
99 | (1) |
|
4.3.1.1 Sensor Operation Principle |
|
|
99 | (1) |
|
4.3.1.2 Flexible Humidity Sensor Demonstration |
|
|
100 | (1) |
|
4.3.2 Sensor Optimization: Influence of Resistor-electrode Structure |
|
|
101 | (3) |
|
4.3.3 Analytical Model of Interdigital Electrode Capacitance |
|
|
104 | (1) |
|
4.3.3.1 Interdigital Electrode and Interdigital Capacitance |
|
|
104 | (1) |
|
4.3.3.2 Modified Analytical Models of IDCs |
|
|
105 | (3) |
|
4.4 Passive UWB Wireless Sensor |
|
|
108 | (10) |
|
4.4.1 Sensor Operation Principle |
|
|
108 | (1) |
|
4.4.2 Theoretical Analysis and Data-processing Algorithm |
|
|
109 | (1) |
|
4.4.2.1 Theoretical Analysis |
|
|
109 | (2) |
|
4.4.2.2 Data-processing Algorithm |
|
|
111 | (1) |
|
|
112 | (2) |
|
4.4.4 Inkjet Printing of Coplanar Waveguide: Variable Ink-layer Thickness Approach |
|
|
114 | (1) |
|
|
114 | (1) |
|
4.4.4.2 Variable Ink-layer Thickness Approach |
|
|
115 | (3) |
|
|
118 | (1) |
|
|
119 | (6) |
|
|
125 | (32) |
|
|
125 | (1) |
|
5.1.1 Evolution of RFID-enabled Ubiquitous Sensing |
|
|
126 | (1) |
|
5.2 Future Trends and Challenges |
|
|
126 | (1) |
|
5.2.1 Design Challenges for RFID Tag Antennas |
|
|
127 | (1) |
|
5.3 RFID Antennas: Narrow Band |
|
|
127 | (6) |
|
5.3.1 Progressive Meander Line Antennas |
|
|
127 | (1) |
|
5.3.1.1 Antennas Design Evolution and Geometry |
|
|
128 | (3) |
|
5.3.1.2 Antenna Fabrication Parameters |
|
|
131 | (1) |
|
5.3.1.3 Parametric Analysis |
|
|
132 | (1) |
|
5.4 RFID Antennas: Wideband |
|
|
133 | (10) |
|
5.4.1 Bowtie Antenna: Rounded Corners with T-matching |
|
|
133 | (1) |
|
5.4.1.1 Antenna Dimensions and Parametric Optimization |
|
|
133 | (1) |
|
5.4.1.2 Field and Circuit Concepts Parametric Analysis |
|
|
134 | (3) |
|
5.4.2 Bowtie Antenna: Square Hole-matching Technique |
|
|
137 | (1) |
|
5.4.2.1 Antenna Design Numerical Analysis and Optimization |
|
|
138 | (1) |
|
5.4.2.2 Effective Aperture of Antenna |
|
|
138 | (2) |
|
5.4.2.3 Results, Discussion, and Analysis |
|
|
140 | (3) |
|
5.5 RFID Antennas: Sensor Enabled |
|
|
143 | (9) |
|
5.5.1 Archimedean Spiral Antenna |
|
|
143 | (2) |
|
5.5.1.1 Manufacturing Parametric Analysis |
|
|
145 | (2) |
|
5.5.1.2 Parametric Analysis of Field and Circuit Concepts |
|
|
147 | (2) |
|
5.5.2 RFID Antenna with Embedded Sensor and Calibration Functions |
|
|
149 | (3) |
|
5.5.2.1 Antenna as a Sensor Design ISO |
|
|
|
|
152 | (1) |
|
|
152 | (5) |
|
6 Printed Chipless RFID Tags |
|
|
157 | (26) |
|
|
157 | (5) |
|
|
157 | (1) |
|
|
158 | (3) |
|
|
161 | (1) |
|
|
162 | (4) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
164 | (2) |
|
6.2 Time-domain-based RFID Tags |
|
|
166 | (5) |
|
6.3 Frequency-domain-based RFID Tags |
|
|
171 | (1) |
|
6.4 Printing of Chipless RFID Tags |
|
|
172 | (6) |
|
6.4.1 Printing of Time-domain RFID Tags |
|
|
172 | (3) |
|
6.4.2 Printing of Frequency Domain Chipless RFID Tags |
|
|
175 | (3) |
|
|
178 | (2) |
|
6.5.1 Large Coding Capacity |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (3) |
|
Part III System Integration for Printed Electronics |
|
|
183 | (86) |
|
7 Heterogeneous Integration of Silicon and Printed Electronics |
|
|
185 | (20) |
|
|
185 | (1) |
|
7.2 Inkjet-printed Interconnections |
|
|
186 | (6) |
|
7.2.1 Inkjet Printing Technology |
|
|
186 | (2) |
|
7.2.2 Electrical Performance and Morphology |
|
|
188 | (3) |
|
7.2.3 Reliability Evaluation in 85°C/85% RH Ambient |
|
|
191 | (1) |
|
7.3 Heterogeneous Integration |
|
|
192 | (9) |
|
7.3.1 Introduction of Traditional Integration Approach |
|
|
192 | (2) |
|
7.3.2 Heterogeneous Integration Process |
|
|
194 | (4) |
|
7.3.3 Electrical Performance of Heterogeneous Interconnects |
|
|
198 | (2) |
|
7.3.4 Bendability of Heterogeneous Interconnects |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (4) |
|
8 Intelligent Packaging: Humidity Sensing System |
|
|
205 | (16) |
|
|
205 | (2) |
|
8.2 Plastic-based Humidity Sensor Box Prototype |
|
|
207 | (3) |
|
8.2.1 Architecture of Humidity Sensor Box |
|
|
207 | (1) |
|
8.2.2 f-MWCNT-based Resistive Humidity Sensor |
|
|
208 | (1) |
|
|
208 | (2) |
|
8.3 Paper-based Humidity Sensor Card Prototype |
|
|
210 | (8) |
|
8.3.1 Fatigue of Interconnects versus Bending and Folding |
|
|
211 | (1) |
|
8.3.1.1 Sample Fabrication and Experimental Setups |
|
|
211 | (1) |
|
8.3.1.2 Fatigue Test Results and Discussion |
|
|
212 | (3) |
|
8.3.2 Bendability of the Humidity Sensor |
|
|
215 | (2) |
|
8.3.3 Demonstration of Humidity Sensor Cards |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (3) |
|
9 Wearable Healthcare Device: Bio-Patch |
|
|
221 | (22) |
|
|
221 | (1) |
|
|
222 | (8) |
|
|
223 | (2) |
|
9.2.2 Customized Bio-sensing Chip |
|
|
225 | (1) |
|
9.2.3 Inkjet-printed Electrodes |
|
|
226 | (4) |
|
9.3 Paper-based Bio-Patch |
|
|
230 | (1) |
|
9.4 Polyimide-based Multi-channel Bio-Patch |
|
|
230 | (4) |
|
9.5 Polyimide-based Miniaturized Bio-Patch |
|
|
234 | (5) |
|
|
239 | (1) |
|
|
239 | (4) |
|
10 Life Cycle Assessment (LCA) for Printed Electronics |
|
|
243 | (26) |
|
|
243 | (3) |
|
10.2 Analysis Methodology |
|
|
246 | (6) |
|
10.3 Environmental Footprint |
|
|
252 | (6) |
|
10.4 Sustainable Production of Polymer- and Paper-based RFID Antennas |
|
|
258 | (6) |
|
|
264 | (1) |
|
|
265 | (4) |
Index |
|
269 | |