Atnaujinkite slapukų nuostatas

El. knyga: Smooth Manifolds

  • Formatas: PDF+DRM
  • Išleidimo metai: 15-Nov-2014
  • Leidėjas: Springer, India, Private Ltd
  • Kalba: eng
  • ISBN-13: 9788132221043
  • Formatas: PDF+DRM
  • Išleidimo metai: 15-Nov-2014
  • Leidėjas: Springer, India, Private Ltd
  • Kalba: eng
  • ISBN-13: 9788132221043

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book offers an introduction to the theory of smooth manifolds, helping students to familiarize themselves with the tools they will need for mathematical research on smooth manifolds and differential geometry. The book primarily focuses on topics concerning differential manifolds, tangent spaces, multivariable differential calculus, topological properties of smooth manifolds, embedded submanifolds, Sard’s theorem and Whitney embedding theorem. It is clearly structured, amply illustrated and includes solved examples for all concepts discussed. Several difficult theorems have been broken into many lemmas and notes (equivalent to sub-lemmas) to enhance the readability of the book. Further, once a concept has been introduced, it reoccurs throughout the book to ensure comprehension. Rank theorem, a vital aspect of smooth manifolds theory, occurs in many manifestations, including rank theorem for Euclidean space and global rank theorem. Though primarily intended for graduate students of mathematics, the book will also prove useful for researchers. The prerequisites for this text have intentionally been kept to a minimum so that undergraduate students can also benefit from it. It is a cherished conviction that “mathematical proofs are the core of all mathematical joy,” a standpoint this book vividly reflects.

1 Differentiable Manifolds
1(30)
1.1 Topological Manifolds
1(4)
1.2 Smooth Manifolds
5(9)
1.3 Examples of Smooth Manifolds
14(17)
2 Tangent Spaces
31(94)
2.1 Smooth Functions
31(6)
2.2 Algebra of Smooth Functions
37(17)
2.3 Smooth Germs on Smooth Manifolds
54(5)
2.4 Derivations
59(13)
2.5 Cotangent Spaces
72(19)
2.6 Tangent Space as a Dual Space
91(17)
2.7 Contravariant Vectors and Covariant Vectors
108(9)
2.8 Tangent Maps
117(8)
3 Multivariate Differential Calculus
125(106)
3.1 Linear Transformations
125(16)
3.2 Differentiation
141(22)
3.3 Inverse Function Theorem
163(14)
3.4 Implicit Function Theorem
177(14)
3.5 Constant Rank Theorem (Easy Version)
191(8)
3.6 Smooth Bump Functions
199(13)
3.7 The Constant Rank Theorem in Rn
212(14)
3.8 Taylor's Theorem
226(5)
4 Topological Properties of Smooth Manifolds
231(76)
4.1 Constant Rank Theorem
231(15)
4.2 Lie Groups
246(19)
4.3 Locally Path Connected Spaces
265(8)
4.4 Smooth Manifold as Paracompact Space
273(15)
4.5 Partitions of Unity Theorem
288(9)
4.6 Topological Manifolds With Boundary
297(7)
4.7 Smooth Covering Maps
304(3)
5 Immersions, Submersions, and Embeddings
307(124)
5.1 Pointwise Pushforward
307(7)
5.2 Open Submanifolds
314(16)
5.3 Tangent Bundles
330(13)
5.4 Smooth Immersion
343(7)
5.5 Inverse Function Theorem for Manifolds
350(14)
5.6 Shrinking Lemma
364(18)
5.7 Global Rank Theorem
382(10)
5.8 Properly Embedded
392(14)
5.9 Regular Level Sets
406(10)
5.10 Smooth Submanifolds
416(5)
5.11 Tangent Space to a Submanifold
421(10)
6 Sard's Theorem
431(46)
6.1 Measure Zero in Manifolds
431(17)
6.2 Taylor's Inequality
448(5)
6.3 Sard's Theorem on Rn
453(22)
6.4 Sard's Theorem on Manifolds
475(2)
7 Whitney Embedding Theorem
477(8)
7.1 Compact Whitney Embedding in Rn
477(3)
7.2 Compact Whitney Embedding in R2m+1
480(5)
Bibliography 485
Rajnikant Sinha is former professor of mathematics at Magadh University, Bodh Gaya, India. A passionate mathematician by heart, Prof. Sinha has published several interesting researches in international journals and contributed a book Solutions to Weatherburns Elementary Vector Analysis. His research areas are topological vector spaces, differential geometry and manifolds.