Atnaujinkite slapukų nuostatas

El. knyga: Smooth Manifolds and Observables

  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 220
  • Išleidimo metai: 10-Sep-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030456504
  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 220
  • Išleidimo metai: 10-Sep-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030456504

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook demonstrates how differential calculus, smooth manifolds, and commutative algebra constitute a unified whole, despite having arisen at different times and under different circumstances. Motivating this synthesis is the mathematical formalization of the process of observation from classical physics. A broad audience will appreciate this unique approach for the insight it gives into the underlying connections between geometry, physics, and commutative algebra. The main objective of this book is to explain how differential calculus is a natural part of commutative algebra. This is achieved by studying the corresponding algebras of smooth functions that result in a general construction of the differential calculus on various categories of modules over the given commutative algebra. It is shown in detail that the ordinary differential calculus and differential geometry on smooth manifolds turns out to be precisely the particular case that corresponds to the category of geometric modules over smooth algebras. This approach opens the way to numerous applications, ranging from delicate questions of algebraic geometry to the theory of elementary particles. Smooth Manifolds and Observables is intended for advanced undergraduates, graduate students, and researchers in mathematics and physics. This second edition adds ten new chapters to further develop the notion of differential calculus over commutative algebras, showing it to be a generalization of the differential calculus on smooth manifolds. Applications to diverse areas, such as symplectic manifolds, de Rham cohomology, and Poisson brackets are explored. Additional examples of the basic functors of the theory are presented alongside numerous new exercises, providing readers with many more opportunities to practice these concepts.
Foreword v
Preface ix
1 Introduction
1(12)
2 Cutoff and Other Special Smooth Functions on RN
13(8)
3 Algebras and Points
21(16)
4 Smooth Manifolds (Algebraic Definition)
37(16)
5 Charts and Atlases
53(12)
6 Smooth Maps
65(12)
7 Equivalence of Coordinate and Algebraic Definitions
77(8)
8 Points, Spectra, and Ghosts
85(16)
9 Differential Calculus as Part of Commutative Algebra
101(40)
10 Symbols and the Hamiltonian Formalism
141(10)
11 Smooth Bundles
151(20)
12 Vector Bundles and Projective Modules
171(32)
13 Localization
203(20)
14 Differential 1-forms and Jets
223(20)
15 Functors of the Differential Calculus and their Representations
243(30)
16 Cosymbols, Tensors, and Smoothness
273(20)
17 Spencer Complexes and Differential Forms
293(30)
18 The (Co)Chain Complexes Coming from the Spencer Sequence
323(18)
19 Differential Forms: Classical and Algebraic Approach
341(22)
20 Cohomology
363(24)
21 Differential Operators over Graded Algebras
387(28)
Afterword 415(2)
Appendix A. M. Vinogradov Observability Principle, Set Theory and the "Foundations of Mathematics" 417(6)
References 423(2)
Index 425
Jet Nestruev is a collective of authors, who originally convened for a seminar run by Alexandre Vinogradov at the Mechanics and Mathematics Department of Moscow State University in 1969. In the present edition, Jet Nestruev consists of Alexander Astashov (Senior Researcher at the State Research Institute of Aviation Systems), Alexandre Vinogradov (Professor of Mathematics at Salerno University), Mikhail Vinogradov (Diffiety Institute), and Alexey Sossinsky (Professor at the Independent University of Moscow).