|
Part I Laying Foundations |
|
|
|
|
3 | (8) |
|
|
3 | (3) |
|
1.1.1 Collaborative Filtering Systems |
|
|
3 | (1) |
|
1.1.2 The Participation Age on the Web |
|
|
4 | (2) |
|
1.2 Organization and Content |
|
|
6 | (1) |
|
|
6 | (5) |
|
|
9 | (2) |
|
|
11 | (12) |
|
|
11 | (1) |
|
2.2 Collecting Preference Information |
|
|
11 | (1) |
|
2.3 Recommender System Types and Techniques |
|
|
12 | (5) |
|
2.3.1 Content-Based Techniques |
|
|
12 | (1) |
|
2.3.2 Collaborative Filtering |
|
|
13 | (1) |
|
2.3.2.1 User-Based Collaborative Filtering |
|
|
14 | (2) |
|
2.3.2.2 Item-Based Collaborative Filtering |
|
|
16 | (1) |
|
2.3.3 Hybrid Recommender Systems |
|
|
16 | (1) |
|
2.4 Evaluating Recommender Systems |
|
|
17 | (6) |
|
|
17 | (1) |
|
2.4.1.1 Predictive Accuracy Metrics |
|
|
18 | (1) |
|
2.4.1.2 Decision-Support Metrics |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
20 | (1) |
|
2.4.2.2 Novelty and Serendipity |
|
|
20 | (3) |
|
Part II Use of Taxonomic Knowledge |
|
|
|
3 Taxonomy-Driven Filtering |
|
|
23 | (24) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (8) |
|
|
25 | (1) |
|
3.3.2 Taxonomy-Driven Profile Generation |
|
|
25 | (2) |
|
3.3.3 Neighborhood Formation |
|
|
27 | (1) |
|
3.3.3.1 Measuring Proximity |
|
|
28 | (1) |
|
3.3.3.2 Selecting Neighbors |
|
|
29 | (1) |
|
3.3.4 Recommendation Generation |
|
|
29 | (1) |
|
3.3.5 Topic Diversification |
|
|
30 | (1) |
|
3.3.5.1 Recommendation Dependency |
|
|
31 | (1) |
|
3.3.5.2 Topic Diversification Algorithm |
|
|
32 | (1) |
|
3.3.5.3 Osmotic Pressure Analogy |
|
|
32 | (1) |
|
3.4 Offline Experiments and Evaluation |
|
|
32 | (6) |
|
|
33 | (1) |
|
3.4.2 Evaluation Framework |
|
|
33 | (1) |
|
3.4.2.1 Benchmark Systems |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
35 | (3) |
|
3.5 Deployment and Online Study |
|
|
38 | (2) |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
40 | (4) |
|
3.6.1 Dataset Composition |
|
|
41 | (1) |
|
3.6.2 Offline Experiment Framework |
|
|
41 | (1) |
|
3.6.2.1 Benchmark Systems |
|
|
41 | (1) |
|
3.6.2.2 Setup and Metrics |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (3) |
|
4 Topic Diversification Revisited |
|
|
47 | (14) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (10) |
|
4.3.1 Offline Experiments |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (2) |
|
|
53 | (1) |
|
4.3.2.1 Survey Outline and Setup |
|
|
54 | (1) |
|
|
54 | (3) |
|
4.3.2.3 Multiple Linear Regression |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (2) |
|
5 Taxonomies for Calculating Semantic Proximity |
|
|
61 | (18) |
|
|
61 | (2) |
|
5.1.1 On Calculating the Similarity of Word Meanings |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
5.3.1 Service Requirements |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (3) |
|
5.4.1 Similarity between Word-Sense Pairs |
|
|
65 | (1) |
|
5.4.2 Multi-class Categorization Approach |
|
|
66 | (1) |
|
|
66 | (1) |
|
5.4.2.2 Measuring Proximity |
|
|
67 | (1) |
|
|
68 | (9) |
|
|
69 | (1) |
|
5.5.2 Online Survey Design |
|
|
69 | (1) |
|
|
70 | (1) |
|
5.5.3.1 Taxonomy-Driven Metrics |
|
|
70 | (1) |
|
5.5.3.2 Text-Based Approaches |
|
|
71 | (1) |
|
|
71 | (1) |
|
5.5.4.1 Parameter Learning |
|
|
71 | (2) |
|
5.5.4.2 Performance Analysis |
|
|
73 | (3) |
|
|
76 | (1) |
|
|
77 | (2) |
|
6 Recommending Technology Synergies |
|
|
79 | (20) |
|
|
79 | (1) |
|
6.2 Motivation for Recommending Technology Synergies |
|
|
79 | (2) |
|
|
81 | (1) |
|
|
81 | (4) |
|
6.4.1 Wikipedia-Based Classifier |
|
|
82 | (1) |
|
6.4.2 ODP-Based Classifier |
|
|
83 | (1) |
|
6.4.3 Merging Classifiers |
|
|
83 | (2) |
|
|
85 | (3) |
|
|
85 | (1) |
|
|
86 | (1) |
|
6.5.3 Hypothesis Validation |
|
|
87 | (1) |
|
6.6 Synergy Classifier Evaluation |
|
|
88 | (6) |
|
|
88 | (3) |
|
|
91 | (1) |
|
6.6.2.1 Intra-group Correlation |
|
|
91 | (1) |
|
6.6.2.2 Inter-group Correlation |
|
|
92 | (1) |
|
6.6.2.3 Classifier Benchmarking |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
94 | (5) |
|
Part III Social Ties and Trust |
|
|
|
7 Trust Propagation Models |
|
|
99 | (34) |
|
|
99 | (1) |
|
|
99 | (2) |
|
7.2.1 On Trust and Trust Propagation |
|
|
100 | (1) |
|
7.3 Computational Trust in Social Networks |
|
|
101 | (6) |
|
7.3.1 Classification of Trust Metrics |
|
|
101 | (3) |
|
7.3.2 Trust and Decentralization |
|
|
104 | (1) |
|
|
105 | (1) |
|
7.3.2.2 Trust Metrics for Decentralized Networks |
|
|
105 | (2) |
|
7.4 Local Group Trust Metrics |
|
|
107 | (17) |
|
7.4.1 Outline of Advogato Maxflow |
|
|
107 | (1) |
|
7.4.1.1 Trust Computation Steps |
|
|
107 | (3) |
|
7.4.1.2 Attack-Resistance Properties |
|
|
110 | (1) |
|
7.4.2 The Appleseed Trust Metric |
|
|
111 | (1) |
|
7.4.2.1 Searches in Contextual Network Graphs |
|
|
111 | (1) |
|
7.4.2.2 Trust Propagation |
|
|
111 | (1) |
|
|
112 | (2) |
|
7.4.2.4 Rank Normalization |
|
|
114 | (1) |
|
7.4.2.5 Backward Trust Propagation |
|
|
115 | (1) |
|
7.4.2.6 Nonlinear Trust Normalization |
|
|
115 | (1) |
|
7.4.2.7 Algorithm Outline |
|
|
116 | (1) |
|
7.4.2.8 Parameterization and Experiments |
|
|
117 | (5) |
|
7.4.2.9 Implementation and Extensions |
|
|
122 | (1) |
|
7.4.3 Comparison of Advogato and Appleseed |
|
|
123 | (1) |
|
|
124 | (7) |
|
7.5.1 Semantics of Distrust |
|
|
125 | (1) |
|
7.5.1.1 Distrust as Negated Trust |
|
|
125 | (1) |
|
7.5.1.2 Propagation of Distrust |
|
|
126 | (1) |
|
7.5.2 Incorporating Distrust into Appleseed |
|
|
126 | (1) |
|
7.5.2.1 Normalization and Distrust |
|
|
127 | (1) |
|
7.5.2.2 Distrust Allocation and Propagation |
|
|
128 | (1) |
|
|
129 | (2) |
|
7.6 Discussion and Outlook |
|
|
131 | (2) |
|
8 Interpersonal Trust and Similarity |
|
|
133 | (22) |
|
|
133 | (1) |
|
8.2 Trust Models in Recommender Systems |
|
|
134 | (1) |
|
8.3 Evidence from Social Psychology |
|
|
135 | (3) |
|
8.3.1 On Interpersonal Attraction and Similarity |
|
|
135 | (1) |
|
8.3.1.1 The Bogus Stranger Technique |
|
|
136 | (1) |
|
8.3.1.2 Analysis of Similarity-Attraction Associations |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
8.4 Trust-Similarity Correlation Analysis |
|
|
138 | (7) |
|
8.4.1 Model and Data Acquisition |
|
|
138 | (1) |
|
8.4.1.1 Information Model |
|
|
138 | (1) |
|
|
139 | (1) |
|
8.4.2 Experiment Setup and Analysis |
|
|
139 | (1) |
|
8.4.2.1 Upper Bound Analysis |
|
|
139 | (1) |
|
8.4.2.2 Lower Bound Analysis |
|
|
140 | (3) |
|
8.4.3 Statistical Significance |
|
|
143 | (1) |
|
|
144 | (1) |
|
8.5 Trust and Similarity in FilmTrust |
|
|
145 | (3) |
|
8.5.1 FilmTrust Introduction |
|
|
145 | (2) |
|
8.5.2 Profile Similarity Computation |
|
|
147 | (1) |
|
8.5.3 Statistical Significance |
|
|
147 | (1) |
|
|
148 | (1) |
|
8.6 Exploiting Correlations between Trust and Similarity |
|
|
148 | (3) |
|
8.7 Discussion and Outlook |
|
|
151 | (4) |
|
Part IV Amalgamating Taxonomies and Trust |
|
|
|
9 Decentralized Recommender Systems |
|
|
155 | (18) |
|
|
155 | (1) |
|
9.2 On Decentralized Recommender Systems |
|
|
155 | (2) |
|
9.2.1 Decentralized Recommender Setup |
|
|
156 | (1) |
|
|
156 | (1) |
|
9.3 Principal Design Considerations |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
160 | (4) |
|
9.5.1 Trust-Based Neighborhood Formation |
|
|
160 | (1) |
|
9.5.1.1 Network Connectivity |
|
|
160 | (2) |
|
9.5.1.2 Trust Propagation Models |
|
|
162 | (1) |
|
9.5.2 Measuring User Similarity and Product-User Relevance |
|
|
163 | (1) |
|
9.5.3 Recommendation Generation |
|
|
163 | (1) |
|
9.6 Offline Experiments and Evaluation |
|
|
164 | (6) |
|
9.6.1 Dataset Acquisition |
|
|
164 | (1) |
|
9.6.2 Evaluation Framework |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
9.6.3.1 Neighborhood Formation Impact |
|
|
166 | (2) |
|
9.6.3.2 Neighborhood Size Sensitivity |
|
|
168 | (1) |
|
9.6.3.3 Neighborhood Overlap Analysis |
|
|
169 | (1) |
|
9.7 Conclusion and Outlook |
|
|
170 | (3) |
|
|
173 | (4) |
|
|
173 | (1) |
|
10.2 Discussion and Outlook |
|
|
174 | (3) |
References |
|
177 | |