Atnaujinkite slapukų nuostatas

Software Verification and Formal Methods for ML-Enabled Autonomous Systems: 5th International Workshop, FoMLAS 2022, and 15th International Workshop, NSV 2022, Haifa, Israel, July 31 - August 1, and August 11, 2022, Proceedings 1st ed. 2022 [Minkštas viršelis]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: Paperback / softback, 205 pages, aukštis x plotis: 235x155 mm, weight: 338 g, 34 Illustrations, color; 8 Illustrations, black and white; X, 205 p. 42 illus., 34 illus. in color., 1 Paperback / softback
  • Serija: Lecture Notes in Computer Science 13466
  • Išleidimo metai: 16-Dec-2022
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3031212215
  • ISBN-13: 9783031212215
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 205 pages, aukštis x plotis: 235x155 mm, weight: 338 g, 34 Illustrations, color; 8 Illustrations, black and white; X, 205 p. 42 illus., 34 illus. in color., 1 Paperback / softback
  • Serija: Lecture Notes in Computer Science 13466
  • Išleidimo metai: 16-Dec-2022
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3031212215
  • ISBN-13: 9783031212215
Kitos knygos pagal šią temą:
This book constitutes the refereed proceedings of the 5th International Workshop on Software Verification and Formal Methods for ML-Enables Autonomous Systems, FoMLAS 2022, and the 15th International Workshop on Numerical Software Verification, NSV 2022, which took place in Haifa, Israel, in July/August 2022. 

The volume contains 8 full papers from the FoMLAS 2022 workshop and 3 full papers from the NSV 2022 workshop. The FoMLAS workshop is dedicated to the development of novel formal methods techniques to discussing on how formal methods can be used to increase predictability, explainability, and accountability of ML-enabled autonomous systems. NSV 2022 is focusing on the challenges of the verification of cyber-physical systems with machine learning components. 

FoMLAS 2022.- VPN: Verification of Poisoning in Neural Networks.- A
Cascade of Checkers for Run-time Certification of Local Robustness.- CEG4N:
Counter-Example Guided Neural Network Quantization Refinement .- Minimal
Multi-Layer Modifications of Deep Neural Networks.- Differentiable Logics for
Neural Network Training and Verification.- Neural Networks in Imandra: Matrix
Representation as a Verification Choice.- Self-Correcting Neural Networks For
Safe Classification.- Self-Correcting Neural Networks For Safe
Classification.- NSV 2022.- Verified Numerical Methods for Ordinary
Differential Equations.- Neural Network Precision Tuning Using Stochastic
Arithmetic.- MLTL Multi-type (MLTLM): A Logic for Reasoning about Signals of
Different Types.