Atnaujinkite slapukų nuostatas

El. knyga: Soil-Water-Solute Process Characterization: An Integrated Approach

  • Formatas: 816 pages
  • Išleidimo metai: 28-Dec-2004
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040205945
Kitos knygos pagal šią temą:
  • Formatas: 816 pages
  • Išleidimo metai: 28-Dec-2004
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040205945
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The practitioner or researcher often faces complex alternatives when selecting a method to characterize properties governing a soil process. After years of research and development, environmental and agricultural professionals now have an array of methods for characterizing soil processes. Well-established methods, however, may not be suitable for the specific conditions of a study since many soil characteristics are intrinsically variable. An objective, integrated approach for soil characterization is needed to more effectively quantify parameters.

Soil-Water-Solute Process Characterization goes beyond technical guidance and addresses the complicating factors such as spatial and temporal variability of soil processes, scale issues, soil structure, and the trade-offs between methods. It focuses on advanced methods for the monitoring and modeling of mass transfer processes in soil. Expert contributors present limitations to well-known methods and alternatives, discussing their practical applications for characterization efforts, evaluating strengths and weaknesses, and focusing on a reduced set of selected techniques. Three in-depth sections cover everything from multidisciplinary approaches for assessing subsurface non-point source pollution to techniques for characterizing water and energy balances at the soil-plant-atmosphere interface, field methods for monitoring soil water status, and computer models for characterizing the effect of chemicals in soil.

This single-source reference is transforming method selection and our understanding of the principles, advantages, and limitations of the available monitoring techniques. Written in a simple and straightforward manner, Soil-Water-Solute Process Characterization is a detailed cookbook and a useful, practical reference for students, practitioners, and researchers.
Preface v
Editors xi
Contributors xiii
Section I Integration of Soil Process Characterization
Multidisciplinary Approach for Assessing Subsurface Non-Point Source Pollution
1(58)
Dennis L. Corwin
Keith Loague
Introduction
2(9)
Definition and Characteristics of NPS Pollution
3(1)
The NPS Pollution Problem
4(1)
The Issue of Health
4(1)
Global Scope and Significance
5(3)
Common NPS Pollutants
8(1)
Justification for Assessing NPS Pollution in Soil
9(2)
Multidisciplinary Approach for Assessing Subsurface NPS Pollutants
11(31)
Deterministic Modeling Process
13(1)
Model Conceptualization
14(1)
Model Parameters
15(1)
Verification
16(1)
Sensitivity Analysis
16(2)
Calibration
18(1)
Validation
19(2)
Simulation and Uncertainty Analysis
21(2)
Spatial Factors to Consider When Modeling NPS Pollutants in Soil
23(1)
Scale
23(2)
Spatial Variability and Structure
25(5)
Modeling NPS Pollutants in Soil
30(1)
Data
31(1)
Measured Data
31(1)
Estimated Data
32(1)
Existing Data
33(1)
GIS
34(2)
Models
36(1)
GIS-Based Deterministic Models
37(1)
GIS-Based Stochastic Models
38(1)
Role of Geostatistics and Fuzzy Set Theory
39(3)
Case Study
42(17)
San Joaquin Valley Groundwater Vulnerability Study
42(4)
References
46(13)
Spatial and Temporal Variability of Soil Processes: Implications for Method Selection and Characterization Studies
59(28)
Chris G. Campbell
Fernando Garrido
Introduction
60(4)
Need for Field Studies
60(1)
Preliminary Issues
61(2)
Determinism in Soil Processes
63(1)
Stochasticity in Soil Processes
63(1)
On Spatial Variability
64(3)
On Temporal Variability
67(2)
Issues in Field Study Design
69(6)
Issues of Scale
69(2)
Characterizing Scale of Study
71(2)
Irrigation, Solute Delivery, and Three-Dimensional Flow
73(2)
Summary and Conclusions
75(12)
Acknowledgments
79(1)
Appendix: Breakthrough Curve Data Analysis
79(1)
Moment Analysis
79(1)
Temporal Analysis
80(1)
References
80(7)
Modeling as a Tool for the Characterization of Soil Water and Chemical Fate and Transport
87(36)
Javier Alvarez-Benedi
Rafael Munoz-Carpena
Marnik Vanclooster
Introduction
88(2)
General Conceptualization of Soil Processes
90(6)
Instantaneous Equilibrium
91(1)
Irreversible Kinetics
92(2)
Reversible kinetics
94(1)
Transport
95(1)
Soil-Water Transport Processes
96(5)
Classical Description of Water Movement
96(2)
Characterization of Water Content--Pressure Head and Hydraulic Conductivity--Pressure Head Relationships
98(2)
Dual Porosity Models
100(1)
Soil-Solute Transport Processes
101(12)
Classical Description of Solute Movement
101(1)
Nonequilibrium Models
102(2)
Solute Dispersion
104(3)
Sorption
107(2)
Volatilization and Gas Solubility
109(2)
Transformation
111(2)
Modeling Soil Processes
113(10)
Building Soil Processes Models
113(2)
Inverse Characterization of Soil Processes
115(1)
Acknowledgments
115(1)
Notation
116(1)
References
117(6)
Section II Soil and Physical Processes: Energy and Water
Techniques for Characterizing Water and Energy Balance at the Soil-Plant-Atmosphere Interface
123(44)
M. J. Polo
J. V. Giraldez
M. P. Gonzalez-Dugo
K. Vanderlinden
The Components of Water and Energy Balances: Description and Nature of Processes
124(5)
Description and Nature of Processes and Associated Uncertainty
125(2)
Different Approaches and Spatiotemporal Scales
127(1)
Remote Sensing: Potential as a Global Data Source
128(1)
Modeling of the Water and Energy Balance at the Soil-Plant-Atmosphere Interface and Scale Effects
129(11)
The Use of Models for the Description of Soil-Plant-Atmosphere Exchange Processes
129(1)
A Simple Water and Energy Balance Model: The Interaction between Land and Atmosphere
129(2)
The Force Restore Approach
131(1)
Dynamics of Soil Moisture Using a Simple Water Balance
132(1)
Exploration of Optimal Conditions for Vegetation through a Water Balance Model
133(3)
Strengths and Weaknesses
136(1)
Interaction of Model Development and Temporal and Spatial Scales
137(1)
Hydrologic Data Assimilation
138(2)
The Vegetation Components: Measurement Methods
140(10)
Interception
140(1)
Methods of Estimation of Interception
141(1)
Strengths and Weaknesses
141(1)
Evapotranspiration
142(1)
Conservation of Mass Approach
142(2)
Conservation-of-Energy Approach
144(2)
Plant Physiology
146(1)
ET Modeling
147(1)
Strengths and Weaknesses
147(1)
Recharge and Temporal Soil Water Content Variations
148(2)
The Remote Sensing Perspective
150(5)
Relations between Spectral Measurements and Biophysical Properties
151(1)
VIS-NIR
151(1)
Thermal Infrared
152(1)
Microwave
153(1)
Strengths and Weaknesses
154(1)
Recommendations and Future Research
155(12)
Notation
155(3)
References
158(9)
Field Methods for Monitoring Soil Water Status
167(30)
Rafael Munoz-Carpena
Axel Ritter
David Bosch
Introduction
168(2)
Methods of Characterization: Trade-offs: Comparative Study
170(18)
Volumetric Field Methods
170(1)
Neutron Moderation
170(2)
Dielectric Methods
172(1)
Time Domain Reflectometry (TDR)
173(2)
Frequency Domain (FD): Capacitance and FDR
175(1)
Amplitude Domain Reflectometry (ADR): Impedance
176(2)
Phase Transmission (Virrib)
178(1)
Time Domain Transmission (TDT)
179(1)
Other Volumetric Field Methods
179(2)
Tensiometric Field Methods
181(1)
Tensiometer
181(1)
Resistance Blocks
182(1)
Gypsum (Bouyoucos) Block
183(1)
Granular Matrix Sensors (GMS)
184(1)
Heat Dissipation
185(1)
Soil Psychrometer
186(2)
Recommendations and Future Research
188(9)
Acknowledgment
193(1)
References
193(4)
Measurement and Characterization of Soil Hydraulic Properties
197(56)
W. D. Reynolds
D. E. Elrick
Introduction
198(1)
Principles of Soil Water Flow and Parameter Definitions
199(4)
Field Methods for In Situ Measurement of Soil Hydraulic Properties
203(43)
Ring Infiltrometers
204(1)
Ring Infiltration Theory
204(1)
Steady-State Infiltration
204(2)
Transient Infiltration
206(1)
Single-Ring and Double-Ring Infiltrometer Methods
207(1)
Traditional Steady Flow Analyses
207(1)
Updated Steady Flow Analyses
208(2)
Traditional Transient Flow Analysis
210(2)
Updated Transient Flow Analyses
212(1)
Twin-Ring and Multiple-Ring Infiltrometer Methods
213(2)
Generalized Steady Flow Analysis for Ring Infiltrometers
215(1)
Calculation of Matric Flux Potential, Sorptivity, and Wetting Front Pressure Head
216(1)
Strengths and Weaknesses of Ring Infiltrometer Methods
216(1)
Well or Borehole Permeameters
217(3)
Well Permeameter Flow Theory
220(1)
Original Well Permeameter Analysis
221(1)
Updated Well Permeameter Analyses
222(1)
Improved Steady Flow Analyses
222(2)
Transient Flow Analyses
224(2)
Strengths and Weaknesses of Well Permeameter Methods
226(1)
Tension or Disc Infiltrometers
227(1)
Tension Infiltrometer Flow Theory
228(4)
Steady Flow --- Multiple Head Tension Infiltrometer Analyses
232(4)
Transient Flow --- Single Head Tension Infiltrometer Analysis
236(2)
Accounting for Contact Sand
238(2)
Strengths and Weaknesses of the Tension Infiltrometer Method
240(2)
Other Methods
242(1)
Instantaneous Profile Method
242(3)
Strengths and Weaknesses of the Instantaneous Profile Method
245(1)
Recommendations for Further Research
246(1)
Concluding Remarks
247(6)
References
247(6)
Unraveling Microscale Flow and Pore Geometry: NMRI and X-Ray Tomography
253(36)
Markus Deurer
Brent E. Clothier
Introduction
254(1)
Nuclear Magnetic Resonance Imaging
255(17)
Measurement Principle: The Behavior of Spins in Magnetic Fields
255(4)
Fourier Imaging
259(1)
Pulse Sequence Design
259(7)
Key, Hardware Components
266(1)
NMR Magnet
266(1)
NMR Probe
267(1)
Magnetic Field Gradient Coils
267(1)
NMR Imaging Spectrometer
268(1)
Applications of NMRI to Soil-Plant-Water Processes
268(3)
Strengths and Weaknesses of NMR Imaging
271(1)
Strengths
271(1)
Weaknesses
271(1)
X-Ray Computed Tomography
272(10)
Measurement Principle: Attenuation of X-Ray Photon Energy
272(1)
Measurement Components
273(1)
Analysis of Measured Attenuation
274(1)
Interpretation of Attenuation Coefficients
274(1)
Homogeneous Object and Monochromatic X-Rays
274(2)
Heterogeneous Object and Monochromatic X-Rays
276(1)
Heterogeneous Object and Polychromatic X-Rays
276(2)
Image Reconstruction
278(1)
Applications of X-Ray Tomography to Soil-Plant-Water Processes
279(2)
Strengths and Weaknesses of X-Ray Tomography
281(1)
Strengths
281(1)
Weaknesses
282(1)
Use of NMRI and X-Ray Tomography for Practical Engineering Purposes
282(1)
Prospects and Future Research Imperatives
283(6)
Microscale
283(1)
Macroscale
283(1)
References
284(5)
Preferential Flow: Identification and Quantification
289(20)
Adel Shirmohammadi
H. Montas
Lars Bergstrom
Ali Sadeghi
David Bosch
Introduction
290(1)
Background on Preferential Flow Processes and Identification
291(2)
Quantification of Preferential Flow
293(10)
Experimental
293(2)
Theoretical
295(1)
Mechanistic, Single-Domain, Derived Stochastically (Averaging) with Deterministic Result
296(1)
Empirical Single-Domain, Deterministic
297(1)
Mechanistic, Bidomain and Multidomain, Deterministic
298(2)
Mechanistic, Single-Domain, Stochastic
300(1)
A New Three-Domain Infiltration Concept for Structured Soils
300(3)
Summary and Conclusions
303(6)
References
304(5)
Section III Soil and Solutes Processes
Field Methods for Monitoring Solute Transport
309(48)
Markus Tuller
Mohammed R. Islam
Introduction
310(1)
Direct Extraction of Soil Solution
310(11)
Field Methods for In Situ Extraction of Soil Solution
310(1)
Suction Cups
310(4)
Combined Solution Sampling --- Tensiometer Probes
314(2)
Suction Lysimeters
316(1)
Passive Capillary Samplers
317(2)
Capillary Absorbers
319(2)
Solution Extraction from Soil Samples
321(1)
Indirect Field Methods for Determining Solute Concentration
321(15)
Time Domain Reflectometry
321(5)
Electrical Resistivity Methods
326(3)
Electromagnetic Induction
329(3)
Porous Matrix Sensors
332(3)
Fiber Optic Sensors
335(1)
Comparison of Direct and Indirect Methods
336(1)
Case Studies and Recommendations for Future Research
337(20)
Detailed Characterization of Solute Transport in a Heterogeneous Field Soil with Fiber Optic Mini Probes and Time Domain Reflectometry
337(5)
Monitoring Snowmelt-Induced Unsaturated Flow and Transport Using Electrical Resistivity Tomography and Suction Samplers
342(3)
Recommendations for Future Research
345(1)
Acknowledgments
346(1)
Notation
346(1)
References
347(10)
Time Domain Reflectometry as an Alternative in Solute Transport Studies
357(34)
Iris Vogeler
Steve Green
Brent E. Clothier
Introduction
358(1)
TDR System for Monitoring Water and Solute Transport
359(18)
The Measurement System
359(1)
TDR Operation
359(2)
Experimental Setup for Laboratory Experiments
361(1)
Probe Design and Placement
362(2)
TDR Data Analysis
364(1)
Soil Moisture Content
364(1)
Solute Concentration
365(3)
Calibration
368(1)
Direct Calibration Approach
368(4)
Indirect Calibration Approach
372(1)
Pulse Application
372(1)
Continuous Solute Application
373(1)
Transport Models Linked to TDR Measurements
374(2)
Strength and Weakness of TDR for Solute Transport Studies
376(1)
Application of TDR for Solute Transport Studies
377(7)
Steady-State Water Flow and Inert Solutes
377(4)
Transient Flow and Inert Solutes
381(1)
Reactive Solutes
382(2)
Recommendations and Future Research
384(7)
Notation
385(1)
References
386(5)
Characterization of Solute Transport Through Miscible Displacement Experiments
391(44)
J. Alvarez-Benedi
C. M. Regalado
A. Ritter
S. Bolado
Characterization of Solute Transport
392(3)
Breakthrough Curve
395(19)
The Miscible Displacement Experiment and Its Mathematical Description
395(2)
Flux, Resident, and Time-Averaged Concentrations
397(1)
Transport Equation
397(1)
Flux, Averaged, and Time Resident Concentrations
398(2)
Boundary Conditions
400(1)
Inlet Boundary Conditions
400(2)
Outlet Boundary Conditions
402(1)
Tracers
403(1)
Analysis of the Breakthrough Curve
404(1)
Effect of Transport Mechanisms on the BTC
404(2)
Moment Analysis
406(2)
Characterizing Transport Mechanisms through Inverse Modeling
408(2)
Application for Sorbed Solutes: Estimation of the Retardation Factor
410(2)
Beyond BTC
412(2)
Techniques for Characterizing Nonequilibrium during Solute Transport in Soils
414(12)
Techniques Based on Breakthrough Curves
414(2)
Effect of Variation of the Pore Water Velocity
416(1)
Single and Multiple Tracers
417(1)
Flow-Interruption Technique
417(6)
Estimation of Nonequilibrium Parameters From Simple Experiments
423(1)
Single Tracer
424(1)
Sequential Tracer Technique
425(1)
Recommendations and Future Research
426(9)
Acknowledgments
427(1)
References
428(7)
Methods to Determine Sorption of Pesticides and Other Organic Compounds
435(30)
Juan Cornejo
Ma Carmen Hermosin
Rafael Celis
Lucia Cox
Introduction
436(2)
Sorption and Other Soil Processes
438(5)
Sorption--Leaching
439(3)
Sorption--Degradation
442(1)
Characterizing Sorption--Desorption Processes
443(12)
Measuring Sorption
443(1)
Sorption Equilibrium
443(1)
Desorption
444(2)
Sorption Kinetics
446(4)
Estimating Sorption
450(1)
Characterizing Sorption at Field Scale
450(2)
Estimating Sorption from Easily Measurable Soil Properties
452(1)
Organic Carbon Content
452(1)
Clay Content
453(1)
Other Soil Properties
454(1)
Strengths and Weaknesses
455(1)
Recommendations and Future Research
455(10)
Acknowledgment
456(1)
References
456(9)
Methods for Measuring Soil-Surface Gas Fluxes
465(38)
Philippe Rochette
Sean M. McGinn
Introduction
466(1)
Soil Mass Balance Approach
467(1)
Chamber Techniques
468(11)
Chamber Impacts on Fg
468(1)
Soil and Air Temperature and Humidity
468(1)
Chamber Headspace Gas Concentration
469(1)
Chamber Design
470(1)
Air Sampling and Gas Concentration Analysis
471(1)
Chamber Types
472(1)
Steady-State Chambers
473(1)
Flow-Through SS Chambers
473(1)
Non-Flow-Through SS Chambers
474(2)
Non-Steady-State Chambers
476(2)
Non-Flow-Through Chambers
478(1)
Flow-Through Chambers
479(1)
Strengths and Weaknesses of Chamber Techniques
479(1)
Mass Exchange Using Micrometeorological Techniques
479(15)
Aerodynamic Technique
480(2)
Bowen Ratio--Energy Balance Technique
482(3)
Eddy Covariance Technique
485(1)
Relaxed Eddy Accumulation Technique
486(1)
Combined Techniques
487(1)
Integrated Horizontal Flux Technique
487(2)
Mass Difference Technique
489(1)
Theoretical Profile Shape Technique
489(2)
Backward Lagrangian Stochastic Technique
491(1)
Strengths and Weaknesses of Micrometeorological Techniques
492(2)
Recommendations and Future Research
494(9)
Notation
495(1)
References
496(7)
Chemical Methods for Soil and Water Characterization
503(56)
Yuncong Li
Meifang Zhou
Jianqiang Zhao
Introduction
505(12)
Criteria for Method Selection
506(1)
Using Standard Methods
506(1)
Fitting to Analytical Purposes
507(1)
Meeting the Method Detection Limit
507(9)
Assessment of Uncertainty
516(1)
Critical Discussion of Analytical Methods of Soil and Water
517(32)
Nitrogen
517(1)
Nitrogen in Soil and Water
517(1)
Laboratory Methods for Ammonia Determination
518(1)
Indophenol Blue Colorimetry
519(1)
Ion-Selective Electrode
519(1)
Distillation-Titrimetric Method
520(1)
Nontraditional, New, or Advanced Methods
520(1)
In Situ Methods for Ammonia Determination
521(1)
Field Testing Kits
521(1)
Field Monitoring Probes
521(1)
Sophisticated Instruments for Field Analysis
521(1)
Laboratory Methods for Nitrate and Nitrite Determination
521(1)
Griess Assay
522(1)
Using Copper--Cadmium
523(1)
Use of Hydrazine Sulfate
523(1)
Ion Chromatography
524(1)
UV Method
525(1)
Nitrate Electrode
525(1)
Nontraditional, New, or Advanced Methods of Capillary Electrophoresis
526(1)
Photochemical and Enzymatic Nitrate Reductions
526(1)
In Situ Methods for Nitrate Determination
527(1)
Field Testing Kits
527(1)
Field Monitoring Probes
527(1)
Sophisticated Instruments for Field Analysis
527(1)
Organic N Determination
527(1)
Kjeldahl Method
528(1)
Persulfate Method
528(1)
High-Temperature Combustion Method
528(1)
Nontraditional, New, or Advanced Methods
529(1)
Phosphorus
529(1)
Phosphorus in Soil and Water
529(4)
Laboratory Methods for Phosphorus Determination
533(1)
Colorimetry Methods
533(1)
Chromatographic Techniques
534(1)
Digestion Method
535(1)
Nontraditional, New, or Advanced Methods
536(1)
In Situ Methods for Phosphorus Determination
537(1)
Metals
538(1)
Metals in Soil and Water
538(1)
Laboratory Methods for Metal Determination
539(1)
In Situ Method for Metal Determination
539(1)
Organic Matter/Carbon
540(1)
Organic Carbon in Soils and Water
540(1)
Organic Carbon Determination
540(1)
Walkley--Black Method (Wet Oxidation)
541(1)
Carbon Analyzers (Dry Combustion)
541(1)
Loss-on-Ignition
541(2)
Pesticides
543(1)
Pesticides in Soil and Water
543(1)
Sample Preparation
543(1)
General Approach for Screening Pesticides in Soil and Water
544(1)
Laboratory Methods for Pesticide Determination
545(1)
Gas Chromatography
545(2)
High Performance Liquid Chromatography
547(1)
Mass Spectrometry
548(1)
In Situ Methods for Pesticide Determination
549(1)
Recommendations and Future Trends
549(10)
Acknowledgments
550(1)
References
551(8)
Section IV Soil and Microorganisms
Evaluation and Characterization of Soil Microbiological Processes
559(26)
Mikael Pell
John Stenstrom
Introduction
559(1)
Basic Soil Microbiology
560(4)
The Actors
561(1)
Activity
561(1)
Diversity
561(1)
Biomass
562(1)
Soil as a Microbial Habitat
562(2)
Methods for Microbial Soil Characterization
564(11)
Sampling and Soil Handling
564(2)
Soil Respiration, Denitrification, and Nitrification
566(1)
Activity
567(2)
Diversity
569(2)
Enumeration and Biomass
571(2)
Choice of Method
573(2)
Some Applications
575(4)
Toxicity Testing
575(1)
Integrated Approach
576(1)
Variation
576(3)
Recommendations and Future Research
579(6)
Recommendations
579(1)
Future Research
579(1)
References
580(5)
Section V Spatial Variability and Scale Issues
Geostatistical Procedures for Characterizing Soil Processes
585(32)
Marc Van Meirvenne
Lieven Vernaillen
Ahmed Douaik
Niko E. C. Verhoest
Moira Callens
Introduction --- Why Geostatistics?
586(1)
Geostatistics
587(18)
Theoretical Concepts
587(1)
Strict Stationarity
588(1)
Second-Order Stationarity
588(1)
Intrinsic Hypothesis
589(1)
Variogram Estimation
589(1)
Models for Variograms
590(1)
Kriging Interpolation
591(1)
Univariate Estimation of Z
591(1)
Multivariate Estimation of Z
592(1)
Limited Number of Secondary Data
592(2)
Exhaustive Secondary Data
594(2)
Strongly Skewed Distributions
596(1)
Robust Variograms
596(1)
Lognormal Kriging
597(1)
Local Spatial Uncertainty
597(1)
Indicator Kriging
598(3)
Bayesian Maximum Entropy
601(2)
Conditional Simulation
603(2)
Geostatistical Sampling
605(3)
Sampling Support
605(1)
Number of Samples
605(1)
Sampling Configuration and Sampling Goal
606(1)
Method of Data Analysis
607(1)
Secondary Information
607(1)
Case Study: Exploring the Soil Moisture--Landscape Relationship
608(6)
Introduction
608(1)
Materials and Methods
608(1)
Results
609(5)
Conclusions
614(3)
References
614(3)
Soil Variability Assessment with Fractal Techniques
617(22)
A. N. Kravchenko
Y. A. Pachepsky
Introduction
617(2)
Fractal Models and Parameters of Spatial Variability
619(13)
Monofractal Models
620(6)
Multifractal Models
626(1)
Multifractal Spectra
627(5)
Simulating Spatial Variability with Fractal Models
632(2)
Summary, Critical Assessment, and Future Research
634(5)
References
635(4)
Geospatial Measurements of Apparent Soil Electrical Conductivity for Characterizing Soil Spatial Variability
639(34)
Dennis L. Corwin
Introduction
640(6)
Justification for Characterizing Spatial Variability with Geospatial ECa Measurements
640(2)
Edaphic Factors Influencing ECa Measurements
642(2)
Mobile ECa Measurement Equipment
644(2)
Guidelines for Conducting an ECa-Directed Soil Sampling Survey
646(1)
Strengths and Limitations
647(3)
Characterizing Spatial Variability with ECa-Directed Soil Sampling: Case Studies
650(12)
Landscape-Scale Solute Transport in the Vadose Zone
652(6)
Assessing Soil Quality and Spatio-Temporal Changes in Soil Quality
658(2)
Delineating Site-Specific Management Units for Precison Agriculture
660(2)
Future Directions
662(11)
Acknowledgments
664(1)
References
664(9)
Section VI Modeling Tools
Assessment of Uncertainty Associated with the Extent of Simulation Processes from Point to Catchment: Application to 1D Pesticide Leaching Models
673(20)
Marco Trevisan
Costantino Vischetti
Introduction
674(2)
Spatialization of 1D Models
676(9)
General
676(1)
Proposed Protocol
677(1)
Data Collection
677(1)
Determination of Number of Simulations
677(1)
All Cells
678(1)
Unique Combination Approach
678(1)
Meta-Model
679(1)
Mapping
679(1)
Uncertainty Linked to Deterministic Simulations
680(1)
General
680(1)
Proposed Protocol
681(4)
Examples
685(3)
Spatialization of 1D Models
685(2)
Probability Analysis of Uncertainty Linked to Deterministic Simulations
687(1)
Recommendations and Future Research
688(5)
References
690(3)
Inverse Modeling Techniques to Characterize Transport Processes in the Soil-Crop Continuum
693(22)
S. Lambot
M. Javaux
F. Hupet
M. Vanclooster
Introduction
694(1)
The Forward Model
695(2)
Existence
696(1)
Identifiability, Uniqueness, and Sensitivity
696(1)
Model Adequacy
697(1)
Objective Function
697(4)
Definition
697(2)
Multi-Informative Objective Functions
699(1)
Use of Prior Information
700(1)
Use of Different Sources of Information
700(1)
Optimization Algorithms
701(2)
Assessing the Well-Posedness of the Inverse Problem
703(12)
Response Surface Analysis
703(3)
Validity
706(1)
Uncertainty Analysis
706(1)
Stability analysis
707(2)
References
709(6)
Computer Models for Characterizing the Fate of Chemicals in Soil: Pesticide Leaching Models and Their Practical Applications
715(42)
Anna Paula Karoliina Jantunen
Marco Trevisan
Ettore Capri
Introduction: State of The Art on the Use of Pesticide Leaching and Dissipation Models
716(14)
Model Selection
717(1)
Purpose of the Model
717(1)
Processes Considered by the Model
718(1)
Scale
718(1)
Temporal Scale
718(1)
Spatial Scale
718(1)
Construction of the Model
719(7)
Model Inputs
726(1)
Model Outputs
726(1)
User Requirements
727(1)
Reliability
727(1)
Correct Use of Models
728(1)
Model Calibration
729(1)
Model Validation
729(1)
Parameterization
729(1)
Assessing the Reliability of Modeling Results
730(1)
Modeling Soil-Pesticide Interactions
730(5)
The Environmental Fate of Pesticides Applied on Agricultural Fields
730(1)
Modeling Strategies
731(1)
Soil Properties
731(1)
Soil Hydrology
732(1)
Pesticide Properties
733(1)
Pesticide--Soil Processes
734(1)
Current Pesticide Leaching Models
735(12)
General Structure of Mathematical Pesticide Leaching Models
735(3)
Current Leaching Modes
738(1)
Applications
739(1)
Research
740(2)
Environmental Management
742(1)
Farm Management
743(1)
Large-Scale Vulnerability Assessment
744(1)
Pesticide Registration
745(2)
Case Studies
747(10)
Pesticides in Italian Horticulture: Potential of Groundwater Contamination and Carryover Effects
747(1)
SuSAP Decision Support System for the Region of Lombardy, Italy
748(1)
Focus
749(2)
References
751(6)
Index 757
Javier Įlvarez-Benedķ, Rafael Munoz-Carpena