Atnaujinkite slapukų nuostatas

El. knyga: Solar Composition and its Evolution - from Core to Corona: Proceedings of an ISSI Workshop 26-30 January 1998, Bern, Switzerland

Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The discovery of chemical elements in celestial bodies and the first estimates of the chemical composition of the solar atmosphere were early results of Astrophysics - the subdiscipline of Astronomy that was originally concerned with the general laws of radiation and with spectroscopy. Following the initial quantitative abundance studies by Henry Norris Russell and by Cecilia Payne-Gaposchkin, a tremendous amount of theoretical, observa­ tional, laboratory and computational work led to a steadily improving body of knowledge of photospheric abundances - a body of knowledge that served to guide the theory of stellar evolution. Solar abundances determined from photospheric spectra, together with the very similar abundances determined from carbonaceous chondrites (where extensive information on isotopic composition is available as well), are nowadays the reference for all cosmic composition measures. Early astrophysical studies of the solar photospheric composition made use of atmosphere models and atomic data. Consistent abundances derived from different atmospheric layers and from lines of different strength helped to confirm and estab­ lish both models and atomic data, and eventually led to the now accepted, so-called "absolute" abundance values - which, for practical reasons, however, are usually given relative to the number of hydrogen nuclei.

Daugiau informacijos

Springer Book Archives
Foreword xi
Unveiling the Secrets of the Sun 1(18)
R. M. Bonnet
I Solar Interior
The `Standard' Sun
19(18)
J. Christensen-Dalsgaard
Shortcomings of the Standard Solar Model
37(12)
W. A. Dziembowski
Microphysics: Equation of State
49(12)
W. Dappen
Opacity of Stellar Matter
61(10)
F. J. Rogers
C. A. Iglesias
Element Settling in the Solar Interior
71(8)
S. Vauclair
Macroscopic Transport
79(12)
J. P. Zahn
Solar Neutrinos
91(14)
Y. Suzuki
Lithium Depletion in the Sun: A Study of Mixing Based on Hydrodynamical Simulations
105(8)
T. Blocker
H. Holweger
B. Freytag
F. Herwig
H.G. Ludwig
M. Steffen
On the Velocity and Intensity Asymmetries of Solar p-mode Lines
113(4)
M. Gabriel
Sensitivity of Low-frequency Oscillations to Updated Solar Models
117(8)
J. Provost
G. Berthomieu
P. Morel
Composition and Opacity in the Solar Interior
125(8)
S. Turck-Chieze
Solar Models with Non-Standard Chemical Composition
133(8)
S. Turcotte
J. Christensen-Dalsgaard
On the Composition of the Solar Interior
141(20)
D. Gough
II Lower Solar Atmosphere
Standard Solar Composition
161(14)
N. Grevesse
A. J. Sauval
Structure of the Solar Photosphere
175(12)
S. K. Solanki
The Structure of the Chromosphere
187(16)
P.G. Judge
H. Peter
The Solar Quiet Chromosphere-Corona Transition Region
203(12)
L. S. Anderson-Huang
FIP Fractionation: Theory
215(12)
J.C. Henoux
FIP Effect in the Solar Upper Atmosphere: Spectroscopic Results
227(14)
U. Feldman
Constraints on the FIP Mechanisms from Solar Wind Abundance Data
241(12)
J. Geiss
Element Separation in the Chromosphere
253(8)
H. Peter
Temporal Evolution of Artificial Solar Granules
261(8)
S. R. O. Ploner
S. K. Solanki
A. S. Gadun
A. Hanslmeier
The Lower Solar Atmosphere
269(14)
R. J. Rutten
III Upper Solar Atmosphere and Solar Wind
Elemental Abundances in Coronal Structures
283(8)
J. Raymond
R. Suleiman
J. L. Kohl
G. Noci
Structure of the Solar Wind and Compositional Variations
291(12)
P. Bochsler
The Solar Noble Gas Record in Lunar Samples and Meteorites
303(12)
R. Wieler
Atomic Physics for Atmospheric Composition Measurements
315(12)
P. R. Young
H. E. Mason
Solar Energetic Particles: Sampling Coronal Abundances
327(14)
D. V. Reames
UVCS/SOHO: The First Two Years
341(8)
S. R. Cranmer
J. L. Kohl
G. Noci
The Expansion of Coronal Plumes in the Fast Solar Wind
349(8)
L. Del Zanna
R. von Steiger
M. Velli
Fractionation of Si, Ne, and Mg Isotopes in the Solar Wind as Measured by SOHO/CELIAS/MTOF
357(14)
R. Kallenbach
F. M. Ipavich
H. Kucharek
P. Bochsler
A. B. Galvin
J. Geiss
F. Gliem
G. Gloeckler
H. Griinwaldt
S. Hefti
M. Hilchenbach
D. Hovestadt
Solar EUV and UV Emission Line Observations Above a Polar Coronal Hole
371(8)
K. Wilhelm
R. Bodmer
Solar Energetic Particle Isotopic Composition
379(8)
D. L. Williams
R. A. Leske
R. A. Mewaldt
E. C. Stone
O5+ in High Speed Solar Wind Streams: SWICS/Ulysses Results
387(10)
R. F. Wimmer-Schweingruber
R. von Steiger
J. Geiss
G. Gloeckler
F. M. Ipavich
B. Wilken
Element and Isotopic Fractionation in Closed Magnetic Structures
397(10)
T. H. Zurbuchen
L. A. Fisk
G. Gloeckler
N. A. Schwadron
Composition Aspects of the Upper Solar Atmosphere
407(12)
R. von Steiger
Is the Sun a Sun-like Star?
419(10)
B. Gustafsson
Author Index 429(1)
List of Participants 430