Atnaujinkite slapukų nuostatas

El. knyga: Solar Engineering of Thermal Processes, Photovoltaics and Wind

3.89/5 (36 ratings by Goodreads)
(University of Wisconsin-Madison), (National Renewable Energy Laboratory), (University of Wisconsin-Madison)
  • Formatas: PDF+DRM
  • Išleidimo metai: 25-Feb-2020
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119540311
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 25-Feb-2020
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119540311
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The bible of solar engineering that translates solar energy theory to practice, revised and updated

The updated Fifth Edition of Solar Engineering of Thermal Processes, Photovoltaics and Wind contains the fundamentals of solar energy and explains how we get energy from the sun. The authors—noted experts on the topic—provide an introduction to the technologies that harvest, store, and deliver solar energy, such as photovoltaics, solar heaters, and cells. The book also explores the applications of solar technologies and shows how they are applied in various sectors of the marketplace.

The revised Fifth Edition offers guidance for using two key engineering software applications, Engineering Equation Solver (EES) and System Advisor Model (SAM). These applications aid in solving complex equations quickly and help with performing long-term or annual simulations. The new edition includes all-new examples, performance data, and photos of current solar energy applications. In addition, the chapter on concentrating solar power is updated and expanded. The practice problems in the Appendix are also updated, and instructors have access to an updated print Solutions Manual. This important book: 

•    Covers all aspects of solar engineering from basic theory to the design of solar technology

•    Offers in-depth guidance and demonstrations of Engineering Equation Solver (EES) and
      System Advisor Model (SAM) software

•    Contains all-new examples, performance data, and photos of solar energy systems today

•    Includes updated simulation problems and a solutions manual for instructors

Written for students and practicing professionals in power and energy industries as well as those in research and government labs, Solar Engineering of Thermal Processes, Fifth Edition continues to be the leading solar engineering text and reference.

Preface xi
Preface to the Fourth Edition xiii
Preface to the Third Edition xv
Preface to the Second Edition xvii
Preface to the First Edition xix
PART I FUNDAMENTALS
1(492)
1 Solar Radiation
3(42)
1.1 The Sun
3(2)
1.2 The Solar Constant
5(1)
1.3 Spectral Distribution of Extraterrestrial Radiation
6(2)
1.4 Variation of Extraterrestrial Radiation
8(1)
1.5 Definitions
9(3)
1.6 Direction of Beam Radiation
12(8)
1.7 Angles for Tracking Surfaces
20(4)
1.8 Ratio of Beam Radiation on Tilted Surface to That on Horizontal Surface
24(6)
1.9 Shading
30(7)
1.10 Extraterrestrial Radiation on a Horizontal Surface
37(4)
1.11 Summary
41(2)
References
43(2)
2 Available Solar Radiation
45(96)
2.1 Definitions
45(1)
2.2 Pyrheliometers and Pyrheliometric Scales
46(4)
2.3 Pyranometers
50(5)
2.4 Measurement of Duration of Sunshine
55(1)
2.5 Solar Radiation Data
56(5)
2.6 Atmospheric Attenuation of Solar Radiation
61(5)
2.7 Estimation of Average Solar Radiation
66(4)
2.8 Estimation of Clear-Sky Radiation
70(3)
2.9 Distribution of Clear and Cloudy Days and Hours
73(3)
2.10 Beam and Diffuse Components of Hourly Radiation
76(3)
2.11 Beam and Diffuse Components of Daily Radiation
79(2)
2.12 Beam and Diffuse Components of Monthly Radiation
81(2)
2.13 Estimation of Hourly Radiation from Daily Data
83(3)
2.14 Radiation on Sloped Surfaces
86(5)
2.15 Radiation on Sloped Surfaces: Isotropic Sky
91(1)
2.16 Radiation on Sloped Surfaces: Anisotropic Sky
92(6)
2.17 Radiation Augmentation
98(5)
2.18 Beam Radiation on Moving Surfaces
103(1)
2.19 Average Radiation on Sloped Surfaces: Isotropic Sky
104(4)
2.20 Average Radiation on Sloped Surfaces: KT Method
108(6)
2.21 Effects of Receiving Surface Orientation on HT
114(2)
2.22 Utilizability
116(4)
2.23 Generalized Utilizability
120(8)
2.24 Daily Utilizability
128(6)
2.25 Summary
134(2)
References
136(5)
3 Selected Heat Transfer Topics
141(36)
3.1 The Electromagnetic Spectrum
141(1)
3.2 Photon Radiation
142(1)
3.3 The Blackbody: Perfect Absorber and Emitter
142(1)
3.4 Planck's Law and Wien's Displacement Law
143(1)
3.5 Stefan-Boltzmann Equation
144(1)
3.6 Radiation Tables
145(2)
3.7 Radiation Intensity and Flux
147(2)
3.8 Infrared Radiation Exchange Between Gray Surfaces
149(1)
3.9 Sky Radiation
150(1)
3.10 Radiation Heat Transfer Coefficient
151(1)
3.11 Natural Convection Between Rat Parallel Plates and Between Concentric Cylinders
152(5)
3.12 Convection Suppression
157(4)
3.13 Vee-Corrugated Enclosures
161(1)
3.14 Heat Transfer Relations for Internal Flow
162(4)
3.15 Wind Convection Coefficients
166(2)
3.16 Heat Transfer and Pressure Drop in Packed Beds and Perforated Plates
168(3)
3.17 Effectiveness-NTU Calculations for Heat Exchangers
171(2)
3.18 Summary
173(1)
References
174(3)
4 Radiation Characteristics of Opaque Materials
177(32)
4.1 Absorptance and Emittance
178(2)
4.2 Kirchhoff's Law
180(1)
4.3 Reflectance of Surfaces
181(4)
4.4 Relationships Among Absorptance, Emittance, and Reflectance
185(1)
4.5 Broadband Emittance and Absorptance
186(1)
4.6 Calculation of Emittance and Absorptance
187(3)
4.7 Measurement of Surface Radiation Properties
190(2)
4.8 Selective Surfaces
192(4)
4.9 Mechanisms of Selectivity
196(3)
4.10 Optimum Properties
199(1)
4.11 Angular Dependence of Solar Absorptance
200(1)
4.12 Absorptance of Cavity Receivers
201(1)
4.13 Specularly Reflecting Surfaces
202(1)
4.14 Advanced Radiation Heat Transfer Analysis
203(2)
4.15 Summary
205(1)
References
206(3)
5 Radiation Transmission through Glazing: Absorbed Radiation
209(35)
5.1 Reflection of Radiation
209(4)
5.2 Absorption by Glazing
213(1)
5.3 Optical Properties of Cover Systems
213(5)
5.4 Transmittance for Diffuse Radiation
218(2)
5.5 Transmittance-Absorptance Product
220(1)
5.6 Angular Dependence of (tot)
221(1)
5.7 Spectral Dependence of Transmittance
222(3)
5.8 Effects of Surface Layers on Transmittance
225(1)
5.9 Absorbed Solar Radiation
226(4)
5.10 Monthly Average Absorbed Radiation
230(6)
5.11 Absorptance of Rooms
236(2)
5.12 Absorptance of Photovoltaic Cells
238(3)
5.13 Summary
241(2)
References
243(1)
6 Flat-Plate Collectors
244(87)
6.1 Description of Flat-Plate Collectors
244(1)
6.2 Basic Flat-Plate Energy Balance Equation
245(1)
6.3 Temperature Distributions in Flat-Plate Collectors
246(2)
6.4 Collector Overall Heat Loss Coefficient
248(14)
6.5 Temperature Distribution Between Tubes and the Collector Efficiency Factor
262(7)
6.6 Temperature Distribution in Flow Direction
269(1)
6.7 Collector Heat Removal Factor and Flow Factor
270(4)
6.8 Critical Radiation Level
274(1)
6.9 Mean Fluid and Plate Temperatures
275(1)
6.10 Effective Transmittance-Absorptance Product
276(3)
6.11 Effects of Dust and Shading
279(1)
6.12 Heat Capacity Effects in Flat-Plate Collectors
280(3)
6.13 Liquid Heater Plate Geometries
283(5)
6.14 Air Heaters
288(7)
6.15 Measurements of Collector Performance
295(1)
6.16 Collector Characterizations
296(1)
6.17 Collector Tests: Efficiency, Incidence Angle Modifier, and Time Constant
297(10)
6.18 Test Data
307(3)
6.19 Thermal Test Data Conversion
310(3)
6.20 Flow Rate Corrections to FR (ja)n and FRUL
313(3)
6.21 Flow Distribution in Collectors
316(1)
6.22 In Situ Collector Performance
317(1)
6.23 Practical Considerations for Flat-Plate Collectors
318(3)
6.24 Putting It All Together
321(5)
6.25 Summary
326(1)
References
327(4)
7 Concentrating Collectors
331(51)
7.1 Collector Configurations
332(2)
7.2 Concentration Ratio
334(2)
7.3 Thermal Performance of Concentrating Collectors
336(7)
7.4 Optical Performance of Concentrating Collectors
343(1)
7.5 Cylindrical Absorber Arrays
344(2)
7.6 Optical Characteristics of Nonimaging Concentrators
346(8)
7.7 Orientation and Absorbed Energy for CPC Collectors
354(4)
7.8 Performance of CPC Collectors
358(2)
7.9 Linear Imaging Concentrators: Geometry
360(3)
7.10 Images Formed by Perfect Linear Concentrators
363(5)
7.11 Images from Imperfect Linear Concentrators
368(2)
7.12 Ray-Trace Methods for Evaluating Concentrators
370(1)
7.13 Incidence Angle Modifiers and Energy Balances
370(6)
7.14 Paraboloidal Concentrators
376(1)
7.15 Central-Receiver Collectors
377(1)
7.16 Practical Considerations
378(1)
7.17 Summary
379(1)
References
380(2)
8 Energy Storage
382(40)
8.1 Process Loads and Solar Collector Outputs
382(2)
8.2 Energy Storage in Solar Thermal Systems
384(1)
8.3 Water Storage
385(3)
8.4 Stratification in Storage Tanks
388(5)
8.5 Packed-Bed Storage
393(8)
8.6 Storage Walls
401(2)
8.7 Seasonal Storage
403(2)
8.8 Phase Change Energy Storage
405(5)
8.9 Chemical Energy Storage
410(1)
8.10 Battery Storage
411(4)
8.11 Hydroelectric and Compressed Air Storage
415(3)
8.12 Summary
418(1)
References
419(3)
9 Solar Process Loads
422(14)
9.1 Examples of Time-Dependent Loads
423(1)
9.2 Hot-Water Loads
424(1)
9.3 Space Heating Loads, Degree-Days, and Balance Temperature
425(3)
9.4 Building Loss Coefficients
428(2)
9.5 Building Energy Storage Capacity
430(1)
9.6 Cooling Loads
430(1)
9.7 Swimming Pool Heating Loads
431(2)
9.8 Summary
433(1)
References
434(2)
10 System Thermal Calculations
436(26)
10.1 Component Models
437(1)
10.2 Collector Heat Exchanger Factor
438(2)
10.3 Duct and Pipe Loss Factors
440(3)
10.4 Controls
443(2)
10.5 Collector Arrays: Series Connections
445(2)
10.6 Performance of Partially Shaded Collectors
447(2)
10.7 Series Arrays with Sections Having Different Orientations
449(2)
10.8 Use of Modified Collector Equations
451(4)
10.9 System Models
455(3)
10.10 Solar Fraction and Solar Savings Fraction
458(1)
10.11 Summary
459(2)
References
461(1)
11 Solar Process Economics
462(31)
11.1 Costs of Solar Process Systems
462(3)
11.2 Design Variables
465(2)
11.3 Economic Figures of Merit
467(2)
11.4 Discounting and Inflation
469(2)
11.5 Present-Worth Factor
471(3)
11.6 Life-Cycle Savings Method
474(5)
11.7 Evaluation of Other Economic Indicators
479(3)
11.8 The P1, P2 Method
482(5)
11.9 Uncertainties in Economic Analyses
487(3)
11.10 Economic Analysis Using Solar Savings Fraction
490(1)
11.11 Summary
491(1)
References
491(2)
PART II APPLICATIONS
493(172)
12 Solar Water Heating: Active and Passive
495(26)
12.1 Water Heating Systems
495(4)
12.2 Freezing, Boiling, and Scaling
499(3)
12.3 Auxiliary Energy
502(2)
12.4 Forced-Circulation Systems
504(1)
12.5 Low-Flow Pumped Systems
505(2)
12.6 Natural-Circulation Systems
507(3)
12.7 Integral Collector Storage Systems
510(2)
12.8 Retrofit Water Heaters
512(1)
12.9 Water Heating in Space Heating and Cooling Systems
512(1)
12.10 Testing and Rating of Solar Water Heaters
513(1)
12.11 Economics of Solar Water Heating
514(3)
12.12 Swimming Pool Heating
517(1)
12.13 Summary
518(1)
References
519(2)
13 Building Heating: Active
521(38)
13.1 Historical Notes
522(1)
13.2 Solar Heating Systems
523(5)
13.3 CSU House III Flat-Plate Liquid System
528(3)
13.4 CSU House II Air System
531(2)
13.5 Heating System Parametric Study
533(4)
13.6 Solar Energy-Heat Pump Systems
537(5)
13.7 Phase Change Storage Systems
542(3)
13.8 Seasonal Energy Storage Systems
545(4)
13.9 Solar and Off-Peak Electric Systems
549(1)
13.10 Solar System Overheating
550(1)
13.11 Solar Heating Economics
551(3)
13.12 Architectural Considerations
554(2)
References
556(3)
14 Building Heating: Passive and Hybrid Methods
559(31)
14.1 Concepts of Passive Heating
560(1)
14.2 Comfort Criteria and Heating Loads
561(1)
14.3 Movable Insulation and Controls
561(1)
14.4 Shading: Overhangs and Wingwalls
562(4)
14.5 Direct-Gain Systems
566(5)
14.6 Collector-Storage Walls and Roofs
571(4)
14.7 Sunspaces
575(2)
14.8 Active Collection-Passive Storage Hybrid Systems
577(1)
14.9 Other Hybrid Systems
578(1)
14.10 Passive Applications
579(5)
14.11 Heat Distribution in Passive Buildings
584(1)
14.12 Costs and Economics of Passive Heating
585(2)
14.13 Summary
587(1)
References
588(2)
15 Solar Cooling
590(29)
15.1 Solar Absorption Cooling
591(2)
15.2 Theory of Absorption Cooling
593(6)
15.3 Combined Solar Heating and Cooling
599(1)
15.4 Simulation Study of Solar Air Conditioning
600(3)
15.5 Operating Experience with Solar Cooling
603(3)
15.6 Applications of Solar Absorption Air Conditioning
606(1)
15.7 Solar Desiccant Cooling
606(3)
15.8 Ventilation and Recirculation Desiccant Cycles
609(2)
15.9 Solar-Mechanical Cooling
611(3)
15.10 Solar-Related Air Conditioning
614(1)
15.11 Passive Cooling
615(1)
References
616(3)
16 Solar Industrial Process Heat
619(17)
16.1 Integration with Industrial Processes
619(1)
16.2 Mechanical Design Considerations
620(1)
16.3 Economics of Industrial Process Heat
621(1)
16.4 Open-Circuit Air Heating Applications
622(4)
16.5 Recirculating Air System Applications
626(2)
16.6 Once-Through Industrial Water Heating
628(2)
16.7 Recirculating Industrial Water Heating
630(2)
16.8 Shallow-Pond Water Heaters
632(2)
16.9 Summary
634(1)
References
634(2)
17 Solar Thermal Power Systems
636(14)
17.1 Thermal Conversion Systems
636(1)
17.2 Gila Bend Pumping System
637(2)
17.3 Luz Systems
639(4)
17.4 Central-Receiver Systems
643(2)
17.5 Solar One and Solar Two Power Plants
645(3)
17.6 Summary
648(1)
References
648(2)
18 Solar Ponds: Evaporative Processes
650(15)
18.1 Salt-Gradient Solar Ponds
650(2)
18.2 Pond Theory
652(2)
18.3 Applications of Ponds
654(1)
18.4 Solar Distillation
655(6)
18.5 Evaporation
661(1)
18.6 Direct Solar Drying
662(1)
18.7 Summary
662(1)
References
663(2)
PART III DESIGN METHODS
665(146)
19 Simulations in Solar Process Design
667(16)
19.1 Simulation Programs
668(1)
19.2 Utility of Simulations
668(1)
19.3 Information from Simulations
669(2)
19.4 TRNSYS: Thermal Process Simulation Program
671(6)
19.5 Simulations and Experiments
677(1)
19.6 Meteorological Data
678(3)
19.7 Limitations of Simulations
681(1)
References
681(2)
20 Design of Active Systems: f-Chart
683(24)
20.1 Review of Design Methods
683(1)
20.2 The f-Chart Method
684(4)
20.3 The f-Chart for Liquid Systems
688(6)
20.4 The f-Chart for Air Systems
694(4)
20.5 Service Water Heating Systems
698(2)
20.6 The f-Chart Results
700(1)
20.7 Parallel Solar Energy-Heat Pump Systems
701(4)
20.8 Summary
705(1)
References
705(2)
21 Design of Active Systems by Utilizability Methods
707(19)
21.1 Hourly Utilizability
708(3)
21.2 Daily_Utilizability
711(3)
21.3 The φ, ∞-Chart Method
714(10)
21.4 Summary
724(1)
References
725(1)
22 Design of Passive and Hybrid Heating Systems
726(34)
22.1 Approaches to Passive Design
726(1)
22.2 Solar-Load Ratio Method
727(9)
22.3 Unutilizability Design Method: Direct Gain
736(6)
22.4 Unutilizability Design Method: Collector-Storage Walls
742(8)
22.5 Hybrid Systems: Active Collection with Passive Storage
750(7)
22.6 Other Hybrid Systems
757(1)
22.7 Summary
758(1)
References
758(2)
23 Design of Photovoltaic Systems
760(29)
23.1 Photovoltaic Converters
761(1)
23.2 PV Generator Characteristics and Models
762(11)
23.3 Cell Temperature
773(2)
23.4 Load Characteristics and Direct-Coupled Systems
775(3)
23.5 Controls and Maximum Power Point Trackers
778(1)
23.6 Applications
779(1)
23.7 Design Procedures
780(6)
23.8 High-Flux PV Generators
786(1)
23.9 Summary
786(1)
References
787(2)
24 Wind Energy
789(22)
24.1 Introduction
789(4)
24.2 Wind Resource
793(8)
24.3 One-Dimensional Wind Turbine Model
801(5)
24.4 Estimating Wind Turbine Average Power and Energy Production
806(4)
24.5 Summary
810(1)
References
810(1)
APPENDIXES
811(74)
A Problems
811(59)
B Nomenclature
870(5)
C International System of Units
875(2)
D Meteorological Data
877(8)
Index 885
The late JOHN A. DUFFIE was Professor Emeritus of Chemical-Engineering and past Director of the Solar Energy Laboratory at the University of Wisconsin-Madison.

WILLIAM A. BECKMAN is the Ouweneel-Bascom Professor Emeritus of Mechanical Engineering and Director Emeritus of the Solar Energy Laboratory at the University of Wisconsin-Madison.

NATHAN BLAIR manages the Distributed Systems and Storage Group in the Strategic Energy Analysis center at the National Renewable Energy Laboratory.