Atnaujinkite slapukų nuostatas

El. knyga: Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory

  • Formatas: PDF+DRM
  • Išleidimo metai: 29-Sep-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319218229
  • Formatas: PDF+DRM
  • Išleidimo metai: 29-Sep-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319218229

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The lessons in this fundamental text equip students with the theory of Computer Assisted Design (CAD), Computer Assisted Engineering (CAE), the essentials of Rapid Prototyping, as well as practical skills needed to apply this understanding in real world design and manufacturing settings. The book includes three main areas: CAD, CAE, and Rapid Prototyping, each enriched with numerous examples and exercises. In the CAD section, Professor Um outlines the basic concept of geometric modeling, Hermite and Bezier Spline curves theory, and 3-dimensional surface theories as well as rendering theory. The CAE section explores mesh generation theory, matrix notion for FEM, the stiffness method, and truss Equations. And in Rapid Prototyping, the author illustrates stereo lithographic theory and introduces popular modern RP technologies. Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product design, analysis, and validation.
1 Introduction to CAD
1(16)
1.1 Computer Aided Design
2(4)
1.2 Design Process
6(5)
1.2.1 Pahl and Beitz's Approach
7(2)
1.2.2 Ohsuga's Approach
9(2)
1.3 Applications of Design Models
11(1)
1.4 Examples by CAD/CAE
12(5)
1.4.1 Disc Rotor
12(2)
1.4.2 Scissor Jack
14(1)
1.4.3 Automotive Rocker Arm
15(2)
2 Graphical Representation for Mechanical Design
17(34)
2.1 Mongian Projection
18(1)
2.2 ANSI Y14
19(8)
2.2.1 Line Style
20(1)
2.2.2 Sectional View
21(1)
2.2.3 Orthographic Projection
21(2)
2.2.4 Pictorial Projection
23(4)
2.3 Tolerance Basics
27(18)
2.3.1 Datum Plane
28(4)
2.3.2 Hole and Shaft Tolerance
32(8)
2.3.3 Geometric Tolerances
40(5)
2.4 Surface Texture
45(4)
References
49(2)
3 3D Geometric Modeling
51(42)
3.1 Coordinate System
52(2)
3.2 Description of Frame
54(1)
3.3 Mappings
55(4)
3.4 General Transformation Mapping
59(2)
3.5 Transformation Arithmetic
61(1)
3.6 General Form of Rotation
62(4)
3.7 Transformation of a 3D Model
66(3)
3.8 Perspective Projection
69(4)
3.9 3D Modeling Schemes
73(19)
3.9.1 Wireframe Geometry
73(2)
3.9.2 Surface Representation
75(4)
3.9.3 Solid Modeling
79(13)
References
92(1)
4 Parametric Line and Curve Theory
93(50)
4.1 Data Structure
94(1)
4.2 Parametric Line
95(2)
4.3 Cubic Spline Curve
97(15)
4.4 Bezier Spline Curve
112(8)
4.5 Surface Theory
120(23)
4.5.1 Bilinear Surface
122(4)
4.5.2 Ruled Surface
126(4)
4.5.3 General Curved Surface
130(13)
5 Miscellaneous Issues in Computer Graphics for Modeling
143(28)
5.1 Basic Raster Graphics Algorithms for Drawing in 2D
144(8)
5.1.1 Scan Conversion
144(1)
5.1.2 The Basic Incremental Algorithm
145(3)
5.1.3 Circular Interpolation Using DDA
148(4)
5.2 Hidden Line Removal
152(17)
5.2.1 Polygon Filling Algorithm
153(2)
5.2.2 Visible Surface Testing
155(1)
5.2.3 Z-Buffering Algorithm
156(3)
5.2.4 Polygon Clipping
159(3)
5.2.5 Z-Clipping
162(7)
References
169(2)
6 Rendering Theory
171(20)
6.1 Color
172(6)
6.1.1 How the Eye Determines Color
174(1)
6.1.2 The Color Matching Experiments
174(2)
6.1.3 A Cousin Color Space
176(1)
6.1.4 The CIE x--y Chromaticity Diagram
177(1)
6.2 Color Display
178(1)
6.3 Dithering
179(3)
6.4 Light Illumination Models
182(6)
6.4.1 Gouraud Shading
183(1)
6.4.2 Phong Shading
184(4)
6.4.3 Other Approaches
188(1)
6.5 Rendering for Shading by Shadow
188(2)
References
190(1)
7 Rapid Prototyping
191(32)
7.1 Definition
192(2)
7.2 Applications
194(7)
7.2.1 Prototypes for Design Evaluation
196(1)
7.2.2 Prototypes for Function Verification
197(2)
7.2.3 Models for Further Manufacturing Processes
199(2)
7.3 Rapid Prototyping Processes
201(11)
7.3.1 General Principle
201(1)
7.3.2 Specific RP&M Processes
202(7)
7.3.3 RP Machine Trend
209(3)
7.4 Data Structure
212(3)
7.5 Physics Behind SFF
215(4)
7.6 Post-Processing
219(1)
References
220(3)
8 Finite Element Modeling and Analysis
223(64)
8.1 What Is FEM?
223(3)
8.2 Automatic Mesh Generation
226(10)
8.2.1 Node Generation
227(3)
8.2.2 Mesh Generation
230(5)
8.2.3 Improvement of Mesh Quality
235(1)
8.3 What Is Truss?
236(5)
8.3.1 Matrix Approach in FEM
237(1)
8.3.2 Force-Displacement Relationship
238(2)
8.3.3 Stiffness Matrix for a Single Spring Element
240(1)
8.4 How to Develop Governing Equations?
241(2)
8.5 Example of a Spring Assemblage
243(2)
8.6 Boundary Conditions
245(4)
8.6.1 Homogeneous Boundary Condition
245(3)
8.6.2 Nonhomogeneous Boundary Condition
248(1)
8.7 Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method)
249(4)
8.8 Development of Truss Equation
253(13)
8.8.1 Derivation of the Stiffness Matrix for a Bar
254(5)
8.8.2 Transformation of Vectors in Two Dimensional Space
259(1)
8.8.3 Global Stiffness Matrix
260(3)
8.8.4 Computation of Stress for a Bar in x--y Plane
263(3)
8.9 Solution of a Plane Truss
266(20)
References
286(1)
Appendix A Tolerance Classification 287(4)
Appendix B Surface Finish Symbols 291(2)
Index 293
Dugan Um achieved his Ph.D. in Mechanical Engineering at the University of Wisconsin at Madison. Sensitive robotic skin for unknown environments motion planning was the subject of his dissertation. After he received his degree, he joined Caterpillar Inc. as a senior research engineer and worked for about 4 years at Caterpillar R&D group. Currently, he is at Texas A&M University, Corpus Christi delivering his 4 years of engineering experiences into classes. His research areas include CAD/CAM, robotic motion planning, 3D sensing, UAV control, and MEMS technology. He is currently an associate professor of Mechanical Engineering, Texas A&M University-Corpus Christi.