Atnaujinkite slapukų nuostatas

El. knyga: Solid Oxide Fuel Cells: Materials Properties and Performance

Edited by , Edited by (College of Sciences, Shanghai University, Shanghai, China), Edited by (Institute for Fuel Cell Institute, Vancouver, BC, Canada), Edited by (University of British Columbia, Vancouver), Edited by (Auburn University, Alabama, USA)
  • Formatas: 298 pages
  • Išleidimo metai: 19-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040207512
Kitos knygos pagal šią temą:
  • Formatas: 298 pages
  • Išleidimo metai: 19-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040207512
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The First Book Centered on Materials Issues of SOFCs





Although the high operating temperature of solid oxide fuel cells (SOFCs) creates opportunities for using a variety of fuels, including low-grade hydrogen and those derived from biomass, it also produces difficulties in materials performance and often leads to materials degradation during operation. These obstacles have proven to be challenges in the path to greater commercialization. Focusing on materials-related issues, Solid Oxide Fuel Cells: Materials Properties and Performance provides state-of-the-art information for the selection and development of materials for improved SOFC performance.





The Materials behind the Development of SOFCs





Summarizing progress in the field thus far, the book describes current materials, future advances in materials, and significant technical problems that remain unresolved. The first three chapters explore materials for the electrochemical cell: electrolytes, anodes, and cathodes. The next two chapters discuss interconnects and sealants, which are two supporting components of the fuel cell stack. The final chapter addresses the various issues involved in materials processing for SOFC applications, such as the microstructure of the component layers and the processing methods used to fabricate the microstructure.





An Important Enabling Technology for Future Sustainable Energy Systems





This volume shows how the performance of SOFCs can be improved through novel materials and methods, thereby, bringing them closer to commercialization.
Preface xi
About the Editors xiii
Contributors xv
Chapter 1 Electrolytes 1
Changrong Xia
1.1 Solid Electrolytes for SOFCs
2
1.2 Oxygen Ion Conduction
3
1.3 Zirconia Electrolytes
5
1.3.1 Yttria-Stabilized Zirconia
5
1.3.2 Scandia-Stabilized Zirconia
8
1.3.3 Aging of Zirconia Electrolytes
11
1.3.4 Grain-Boundary Effect on Conductivity
13
1.3.5 Other Doping and Codoping
15
1.3.6 Fabrication of Zirconia Electrolyte Films
16
1.4 Ceria Electrolytes
20
1.4.1 Effect of Dopant Radius
20
1.4.2 Gd-Doped Ceria
23
1.4.3 Effect of SiO2 Impurity
28
1.4.4 Sm-Doped Ceria
33
1.4.5 Yttria-Doped Ceria
37
1.4.6 Codoped Ceria Electrolytes
39
1.4.7 Preparation
41
1.4.7.1 Solid-State Reaction
41
1.4.7.2 Sol-Gel Process
43
1.4.7.3 Coprecipitation Process
44
1.4.7.4 Glycine Nitrate Process
46
1.4.8 Electronic Conductivity and Cell Voltage
47
1.4.9 Fuel Cell Performance
52
1.4.10 Interlayer for Zirconia-Based SOFCs
56
1.5 LaGaO3-Based Electrolytes
59
1.6 Summary and Conclusions
63
References
64
Chapter 2 Anodes 73
Zhe Cheng, Jeng-Han Wang, and Meilin Liu
2.1 Introduction
74
2.1.1 Anode Requirements
74
2.1.2 Anode Materials
75
2.2 Ni-YSZ Cermet Anode
76
2.2.1 Starting Materials and Fabrication Method
76
2.2.2 Electrical Conductivity of Ni-YSZ Cermet Anode
76
2.2.2.1 Anode Composition (or Ni to YSZ volume ratio)
76
2.2.2.2 Effect of NiO and YSZ Particle Size
78
2.2.2.3 Influence of Processing Conditions on Anode Electrical Conductivity
84
2.2.3 Electrochemical Performance of Ni-YSZ Cermet Anode
90
2.2.3.1 Influence of Anode Composition on Anode Electrochemical Performance
90
2.2.3.2 Influence of Starting Materials Particle Size on Anode Electrochemical Performance
92
2.2.3.3 Influence of Sintering Temperature on Anode Electrochemical Performance
95
2.2.3.4 Influence of Testing Atmosphere on Anode Electrochemical Performance
95
2.2.3.5 Influence of Current/Voltage on Anode Electrochemical Performance
98
2.2.3.6 Influence of Porosity on Anode Electrochemical Performance
98
2.2.4 Sulfur Poisoning of Ni-YSZ Cermet Anodes
101
2.2.4.1 Short-Term Sulfur Poisoning Behavior
101
2.2.4.2 Long-Term Sulfur Poisoning Behavior
109
2.2.4.3 Reversibility of Sulfur Poisoning
113
2.2.4.4 Sulfur Poisoning Mechanism
113
2.3 Alternate Anodes for SOFCs
115
2.3.1 Carbon-Tolerant Anodes
115
2.3.2 Sulfur-Tolerant Anodes
118
2.4 Summary
121
Acknowledgments
122
Symbols and Abbreviations
122
References
122
Chapter 3 Cathodes 131
San Ping Jiang and Jian Li
3.1 Introduction
131
3.2 Lanthanum Manganite-Based Perovskites
132
3.2.1 Structure, Oxygen Nonstoichiometry, and Defect Model
132
3.2.2 Electronic Conductivity and Thermal Expansion Coefficient
137
3.2.3 Oxygen Diffusion and Surface Exchange Coefficient
139
3.2.4 Polarization, Activation, and Microstructure Optimization
141
3.3 Lanthanum Cobaltite and Ferrite Perovskites
146
3.3.1 Structure, Oxygen Nonstoichiometry, and Defect Model
146
3.3.2 Electronic Conductivity and Thermal Expansion Coefficient
147
3.3.3 Oxygen Diffusion and Surface Exchange Coefficient
150
3.3.4 Electrochemical Polarization Performance
150
3.4 Other Perovskite Oxides
154
3.5 Interaction and Reactivity with Other SOFC Components
156
3.5.1 Interaction with the Electrolyte
157
3.5.1.1 Interaction with YSZ Electrolyte
157
3.5.1.2 Interaction with LSGM
161
3.5.2 Interaction with Fe-Cr Alloy Metallic Interconnect
162
3.5.3 Interaction with Other SOFC Components
165
3.6 Performance Stability and Degradation
167
3.7 Summary and Conclusions
170
References
171
Chapter 4 Interconnects 179
Zhenguo (Gary) Yang and Jeffrey W. Fergus
4.1 Introduction
179
4.1.1 Interconnect Requirements
179
4.1.2 Materials Used for Interconnects
180
4.2 Ceramic Interconnects
180
4.2.1 Stability
180
4.2.1.1 Volatilization
181
4.2.1.2 Chemical Compatibility
181
4.2.2 Transport Properties
181
4.2.3 Physical Properties
184
4.2.3.1 Dimensional Changes
184
4.2.3.2 Mechanical Properties
185
4.2.4 Processing
186
4.3 Metallic Interconnect Materials
187
4.3.1 Candidate Alloys
187
4.3.2 Surface Stability: Oxidation and Corrosion
190
4.3.3 Chromia Scale Volatility and Cell Poisoning
195
4.3.4 Chemical Compatibility
196
4.4 Protective Coatings for Metallic Interconnects
198
4.5 Summary and Conclusions
202
References
203
Chapter 5 Sealants 213
P.A. Lessing, J. Hartvigsen, and S. Elangovan
5.1 Introduction
213
5.2 Types of High-Temperature Seals
214
5.2.1 Glass Seals
214
5.2.2 Glass-Ceramic Seals
217
5.2.3 Compressive Seals
218
5.2.4 Metal Seals
218
5.2.5 Ceramic-Composite Seals
219
5.2.6 Compliant Seals
219
5.3 Hydrodynamics of Leaking Seals
220
5.3.1 Theory of Seal Leaks
220
5.3.2 Analysis of Seal Leaks
223
5.4 Testing of Seal Properties and Behavior
227
5.4.1 Wetting
228
5.4.2 Stability
229
5.4.2.1 Chemical Reactivity and Stability
230
5.4.2.2 Pressure-Leakage Test
231
5.4.2.3 Pressure-Sensor Tests for Leaks
232
5.5 Summary and Conclusions
234
References
235
Chapter 6 Processing 239
Olivera Kesler and Paolo Marcazzan
6.1 Influence of Processing on SOFC Microstructure, Property, and Performance
240
6.1.1 Microstructural, Property, and Performance Requirements of SOFC Components
241
6.1.2 Composite Electrodes
242
6.1.3 Effects of Particle Size and Microstructure on Performance
245
6.1.4 Multi-Layered and Graded Components
247
6.1.4.1 Bilayered Electrodes
248
6.1.4.2 Multilayered and Graded Electrodes
249
6.1.4.3 Bilayered Electrolytes
250
6.2 Processing Methods for SOFC Components
251
6.2.1 Support Layers
252
6.2.1.1 Tubular Cells
252
6.2.1.2 Planar Cells
254
6.2.2 Nonstructural Layers
256
6.2.2.1 Wet-Ceramic Processing Methods
257
6.2.2.2 Direct-Deposition Techniques
264
6.3 Design Considerations in the Selection of Processing Methods for SOFCs
270
6.3.1 Electrochemical Performance of Fuel Cells
270
6.3.2 Durability
271
6.3.3 Cost
271
6.3.3.1 Material Cost
272
6.3.3.2 Equipment and Process Cost and Deposition Time
272
6.3.4 Compatibility with Other Layer-Processing Methods
273
6.3.5 Material Composition Effects on Choice of Processing Method
273
6.3.5.1 Inter-Reactions between Material Layers
274
6.3.5.2 Metal-Supported Cells
274
6.3.5.3 Direct Oxidation Anode Materials
274
6.3.5.4 Sulfur-Tolerant Anode Materials
274
6.3.5.5 Graded or Multilayered Materials
275
6.4 Summary and Conclusions
275
References
276
Index 283
Jeffrey W. Fergus, Rob Hui, Rob Hui, David P. Wilkinson, Jiujun Zhang