Atnaujinkite slapukų nuostatas

Solid State Physics: Essential Concepts 2nd Revised edition [Kietas viršelis]

(University of Pittsburgh)
  • Formatas: Hardback, 765 pages, aukštis x plotis x storis: 257x197x31 mm, weight: 1690 g, Worked examples or Exercises; 13 Halftones, black and white; 252 Line drawings, black and white
  • Išleidimo metai: 09-Jan-2020
  • Leidėjas: Cambridge University Press
  • ISBN-10: 110719198X
  • ISBN-13: 9781107191983
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 765 pages, aukštis x plotis x storis: 257x197x31 mm, weight: 1690 g, Worked examples or Exercises; 13 Halftones, black and white; 252 Line drawings, black and white
  • Išleidimo metai: 09-Jan-2020
  • Leidėjas: Cambridge University Press
  • ISBN-10: 110719198X
  • ISBN-13: 9781107191983
Kitos knygos pagal šią temą:
By identifying unifying concepts across solid state physics, this text covers theory in an accessible way to provide graduate students with an intuitive understanding of effects and the basis for making quantitative calculations. Each chapter focuses on a different set of theoretical tools, using examples from specific systems and demonstrating practical applications to real experimental topics. Advanced theoretical methods including group theory, many-body theory, and phase transitions are introduced in an accessible way, and the quasiparticle concept is developed early, with discussion of the properties and interactions of electrons and holes, excitons, phonons, photons, and polaritons. New to this edition are sections on graphene, surface states, photoemission spectroscopy, 2D spectroscopy, transistor device physics, thermoelectricity, metamaterials, spintronics, exciton-polaritons, and flux quantization in superconductors. Exercises are provided to help put knowledge into practice, with a solutions manual for instructors available online, while appendices review the basic mathematical methods used in the book.

Recenzijos

'David W. Snoke is an experimental physicist with a deep understanding of solid state theory. His masterly distillation of the necessary mathematical ideas into understandable physics gained the first edition of this book an enthusiastic readership. This second edition preserves the readability while expanding the content to include some of the most up-to-date 'essential concepts'. A thorough study of the text will provide a new graduate student with a firm foundation for participating in the latest research.' Michael Stone, University of Illinois, Urbana-Champaign

Daugiau informacijos

Focuses on the essential concepts needed for an intuitive understanding of modern solid state theory and its experimental applications.
Preface xv
1 Electron Bands
1(85)
1.1 Where Do Bands Come From? Why Solid State Physics Requires a New Way of Thinking
1(9)
1.1.1 Energy Splitting Due to Wave Function Overlap
2(5)
1.1.2 The LCAO Approximation
7(2)
1.1.3 General Remarks on Bands
9(1)
1.2 The Kronig-Penney Model
10(6)
1.3 Bloch's Theorem
16(2)
1.4 Bravais Lattices and Reciprocal Space
18(9)
1.5 X-ray Scattering
27(4)
1.6 General Properties of Bloch Functions
31(4)
1.7 Boundary Conditions in a Finite Crystal
35(3)
1.8 Density of States
38(6)
1.8.1 Density of States at Critical Points
39(2)
1.8.2 Disorder and Density of States
41(3)
1.9 Electron Band Calculations in Three Dimensions
44(17)
1.9.1 How to Read a Band Diagram
44(3)
1.9.2 The Tight-Binding Approximation and Wannier Functions
47(5)
1.9.3 The Nearly Free Electron Approximation
52(3)
1.9.4 K p Theory
55(5)
1.9.5 Other Methods of Calculating Band Structure
60(1)
1.10 Angle-Resolved Photoemission Spectroscopy
61(4)
1.11 Why Are Bands Often Completely Full or Empty? Bands and Molecular Bonds
65(9)
1.11.1 Molecular Bonds
65(3)
1.11.2 Classes of Electronic Structure
68(1)
1.11.3 sp3 Bonding
69(3)
1.11.4 Dangling Bonds and Defect States
72(2)
1.12 Surface States
74(5)
1.13 Spin in Electron Bands
79(7)
1.13.1 Split-off Bands
80(2)
1.13.2 Spin-Orbit Effects on the /r-Dependence of Bands
82(3)
References
85(1)
2 Electronic Quasiparticles
86(71)
2.1 Quasiparticles
86(2)
2.2 Effective Mass
88(3)
2.3 Excitons
91(4)
2.4 Metals and the Fermi Gas
95(6)
2.4.1 Isotropic Fermi Gas at T = 0
97(2)
2.4.2 Fermi Gas at Finite Temperature
99(2)
2.5 Basic Behavior of Semiconductors
101(9)
2.5.1 Equilibrium Populations of Electrons and Holes
102(2)
2.5.2 Semiconductor Doping
104(2)
2.5.3 Equilibrium Populations in Doped Semiconductors
106(2)
2.5.4 The Mott Transition
108(2)
2.6 Band Bending at Interfaces
110(9)
2.6.1 Metal-to-Metal Interfaces
110(2)
2.6.2 Doped Semiconductor Junctions
112(3)
2.6.3 Metal-Semiconductor Junctions
115(3)
2.6.4 Junctions of Undoped Semiconductors
118(1)
2.7 Transistors
119(9)
2.7.1 Bipolar Transistors
119(4)
2.7.2 Field Effect Transistors
123(5)
2.8 Quantum Confinement
128(14)
2.8.1 Density of States in Quantum-Confined Systems
130(2)
2.8.2 Superlattices and Bloch Oscillations
132(5)
2.8.3 The Two-Dimensional Electron Gas
137(1)
2.8.4 One-Dimensional Electron Transport
137(2)
2.8.5 Quantum Dots and Coulomb Blockade
139(3)
2.9 Landau Levels and Quasiparticles in Magnetic Field
142(15)
2.9.1 Quantum Mechanical Calculation of Landau Levels
144(3)
2.9.2 De Haas-Van Alphen and Shubnikov-De Haas Oscillations
147(1)
2.9.3 The Integer Quantum Hall Effect
148(5)
2.9.4 The Fractional Quantum Hall Effect and Higher-Order Quasiparticles
153(3)
References
156(1)
3 Classical Waves in Anisotropic Media
157(55)
3.1 The Coupled Harmonic Oscillator Model
157(11)
3.1.1 Harmonic Approximation of the Interatomic Potential
158(1)
3.1.2 Linear-Chain Model
159(4)
3.1.3 Vibrational Modes in Higher Dimensions
163(5)
3.2 Neutron Scattering
168(1)
3.3 Phase Velocity and Group Velocity in Anisotropic Media
169(2)
3.4 Acoustic Waves in Anisotropic Crystals
171(11)
3.4.1 Stress and Strain Definitions: Elastic Constants
172(6)
3.4.2 The Christoffel Wave Equation
178(2)
3.4.3 Acoustic Wave Focusing
180(2)
3.5 Electromagnetic Waves in Anisotropic Crystals
182(11)
3.5.1 Maxwell's Equations in an Anisotropic Crystal
182(3)
3.5.2 Uniaxial Crystals
185(5)
3.5.3 The Index Ellipsoid
190(3)
3.6 Electro-optics
193(3)
3.7 Piezoelectric Materials
196(4)
3.8 Reflection and Transmission at Interfaces
200(7)
3.8.1 Optical Fresnel Equations
200(3)
3.8.2 Acoustic Fresnel Equations
203(3)
3.8.3 Surface Acoustic Waves
206(1)
3.9 Photonic Crystals and Periodic Structures
207(5)
References
210(2)
4 Quantized Waves
212(51)
4.1 The Quantized Harmonic Oscillator
212(3)
4.2 Phonons
215(5)
4.3 Photons
220(4)
4.4 Coherent States
224(5)
4.5 Spatial Field Operators
229(3)
4.6 Electron Fermi Field Operators
232(2)
4.7 First-Order Time-Dependent Perturbation Theory: Fermi's Golden Rule
234(5)
4.8 The Quantum Boltzmann Equation
239(11)
4.8.1 Equilibrium Distributions of Quantum Particles
244(3)
4.8.2 The H-Theorem and the Second Law
247(3)
4.9 Energy Density of Solids
250(8)
4.9.1 Density of States of Phonons and Photons
251(1)
4.9.2 Planck Energy Density
252(1)
4.9.3 Heat Capacity of Phonons
253(3)
4.9.4 Electron Heat Capacity: Sommerfeld Expansion
256(2)
4.10 Thermal Motion of Atoms
258(5)
References
262(1)
5 Interactions of Quasiparticles
263(64)
5.1 Electron-Phonon Interactions
264(9)
5.1.1 Deformation Potential Scattering
264(4)
5.1.2 Piezoelectric Scattering
268(2)
5.1.3 Frohlich Scattering
270(1)
5.1.4 Average Electron-Phonon Scattering Time
271(2)
5.2 Electron-Photon Interactions
273(7)
5.2.1 Optical Transitions Between Semiconductor Bands
274(3)
5.2.2 Multipole Expansion
277(3)
5.3 Interactions with Defects: Rayleigh Scattering
280(7)
5.4 Phonon-Phonon Interactions
287(7)
5.4.1 Thermal Expansion
290(2)
5.4.2 Crystal Phase Transitions
292(2)
5.5 Electron-Electron Interactions
294(8)
5.5.1 Semiclassical Estimation of Screening Length
297(3)
5.5.2 Average Electron-Electron Scattering Time
300(2)
5.6 The Relaxation-Time Approximation and the Diffusion Equation
302(4)
5.7 Thermal Conductivity
306(2)
5.8 Electrical Conductivity
308(5)
5.9 Thermoelectricity: Drift and Diffusion of a Fermi Gas
313(5)
5.10 Magnetoresistance
318(1)
5.11 The Boltzmann Transport Equation
319(3)
5.12 Drift of Defects and Dislocations: Plasticity
322(5)
References
325(2)
6 Group Theory
327(48)
6.1 Definition of a Group
327(2)
6.2 Representations
329(4)
6.3 Character Tables
333(3)
6.4 Equating Physical States with the Basis States of Representations
336(4)
6.5 Reducing Representations
340(6)
6.6 Multiplication Rules for Outer Products
346(5)
6.7 Review of Types of Operators
351(1)
6.8 Effects of Lowering Symmetry
352(3)
6.9 Spin and Time Reversal Symmetry
355(4)
6.10 Allowed and Forbidden Transitions
359(7)
6.10.1 Second-Order Transitions
361(1)
6.10.2 Quadrupole Transitions
362(4)
6.11 Perturbation Methods
366(9)
6.11.1 Group Theory in k p Theory
366(4)
6.11.2 Method of Invariants
370(4)
References
374(1)
7 The Complex Susceptibility
375(51)
7.1 A Microscopic View of the Dielectric Constant
375(8)
7.1.1 Fresnel Equations for the Complex Dielectric Function
380(2)
7.1.2 Fano Resonances
382(1)
7.2 Kramers-Kronig Relations
383(5)
7.3 Negative Index of Refraction: Metamaterials
388(3)
7.4 The Quantum Dipole Oscillator
391(8)
7.5 Polaritons
399(12)
7.5.1 Phonon-Polaritons
399(3)
7.5.2 Exciton-Polaritons
402(2)
7.5.3 Quantum Mechanical Formulation of Polaritons
404(7)
7.6 Nonlinear Optics and Photon-Photon Interactions
411(6)
7.6.1 Second-Harmonic Generation and Three-Wave Mixing
411(4)
7.6.2 Higher-Order Effects
415(2)
7.7 Acousto-Optics and Photon-Phonon Interactions
417(4)
7.8 Raman Scattering
421(5)
References
425(1)
8 Many-Body Perturbation Theory
426(80)
8.1 Higher-Order Time-Dependent Perturbation Theory
426(7)
8.2 Polarons
433(2)
8.3 Shift of Bands with Temperature
435(1)
8.4 Line Broadening
436(5)
8.5 Diagram Rules for Rayleigh-Schrodinger Perturbation Theory
441(5)
8.6 Feynman Perturbation Theory
446(8)
8.7 Diagram Rules for Feynman Perturbation Theory
454(3)
8.8 Self-Energy
457(4)
8.9 Physical Meaning of the Green's Functions
461(6)
8.10 Finite Temperature Diagrams
467(4)
8.11 Screening and Plasmons
471(11)
8.11.1 Plasmons
475(4)
8.11.2 The Conductor-Insulator Transition and Screening
479(3)
8.12 Ground State Energy of the Fermi Sea: Density Functional Theory
482(4)
8.13 The Imaginary-Time Method for Finite Temperature
486(8)
8.14 Symmetrized Green's Functions
494(4)
8.15 Matsubara Calculations for the Electron Gas
498(8)
References
504(2)
9 Coherence and Correlation
506(58)
9.1 Density Matrix Formalism
507(3)
9.2 Magnetic Resonance: The Bloch Equations
510(10)
9.3 Optical Bloch Equations
520(3)
9.4 Quantum Coherent Effects
523(8)
9.5 Correlation Functions and Noise
531(5)
9.6 Correlations in Quantum Mechanics
536(4)
9.7 Particle-Particle Correlation
540(3)
9.8 The Fluctuation-Dissipation Theorem
543(5)
9.9 Current Fluctuations and the Nyquist Formula
548(2)
9.10 The Kubo Formula and Many-Body Theory of Conductivity
550(5)
9.11 Mesoscopic Effects
555(9)
References
562(2)
10 Spin and Magnetic Systems
564(54)
10.1 Overview of Magnetic Properties
564(4)
10.2 Lande g-factor in Solids
568(2)
10.3 The Ising Model
570(7)
10.3.1 Spontaneous Symmetry Breaking
571(4)
10.3.2 External Magnetic Field: Hysteresis
575(2)
10.4 Critical Exponents and Fluctuations
577(7)
10.5 Renormalization Group Methods
584(4)
10.6 Spin Waves and Goldstone Bosons
588(4)
10.7 Domains and Domain Walls
592(3)
10.8 Spin-Spin Interaction
595(17)
10.8.1 Ferromagnetic Instability
597(4)
10.8.2 Localized States and RKKY Exchange Interaction
601(6)
10.8.3 Electron-Hole Exchange
607(5)
10.9 Spin Flip and Spin Dephasing
612(6)
References
617(1)
11 Spontaneous Coherence in Matter
618(69)
11.1 Theory of the Ideal Bose Gas
620(3)
11.2 The Bogoliubov Model
623(3)
11.3 The Stability of the Condensate: Analogy with Ferromagnets
626(5)
11.4 Bose Liquid Hydrodynamics
631(3)
11.5 Superfluids versus Condensates
634(4)
11.6 Constructing Bosons from Fermions
638(3)
11.7 Cooper Pairing
641(3)
11.8 BCS Wave Function
644(4)
11.9 Excitation Spectrum of a Superconductor
648(10)
11.9.1 Density of States and Tunneling Spectroscopy
652(4)
11.9.2 Temperature Dependence of the Gap
656(2)
11.10 Magnetic Effects of Superconductors
658(11)
11.10.1 Critical Field
660(3)
11.10.2 Flux Quantization
663(2)
11.10.3 Type I and Type II Superconductors
665(4)
11.11 Josephson Junctions
669(5)
11.12 Spontaneous Optical Coherence: Lasing as a Phase Transition
674(3)
11.13 Excitonic Condensation
677(10)
11.13.1 Microcavity Polaritons
679(5)
11.13.2 Other Quasiparticle Condensates
684(1)
References
685(2)
Appendix A Review of Bra-Ket Notation 687(2)
Appendix B Review of Fourier Series and Fourier Transforms 689(3)
Appendix C Delta-Function Identities 692(3)
Appendix D Quantum Single Harmonic Oscillator 695(3)
Appendix E Second-Order Perturbation Theory 698(6)
Appendix F Relativistic Derivation of Spin Physics 704(6)
Index 710
David W. Snoke is a Professor at the University of Pittsburgh where he leads a research group studying quantum many-body effects in semiconductor systems. In 2007, his group was one of the first to observe Bose-Einstein condensation of polaritons. He is a Fellow of the American Physical Society.