Atnaujinkite slapukų nuostatas

El. knyga: Solid-State Physics: An Introduction to Principles of Materials Science

3.88/5 (26 ratings by Goodreads)
  • Formatas: PDF+DRM
  • Serija: Advanced Texts in Physics
  • Išleidimo metai: 18-Apr-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662053423
  • Formatas: PDF+DRM
  • Serija: Advanced Texts in Physics
  • Išleidimo metai: 18-Apr-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662053423

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This new edition of the well-received introduction to solid-state physics provides a comprehensive overview of the basic theoretical and experimental concepts of materials science. Experimental aspects and laboratory details are highlighted in separate panels that enrich text and emphasize recent developments. Notably, new material in the third edition includes sections on important new devices, aspects of non- periodic structures of matter, phase transitions, defects, superconductors and nanostructures. Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, materials science and electrical engineering. It has been thoroughly updated to maintain its relevance and usefulness to students and professionals.

This new edition of the well-received introduction to solid-state physics provides a comprehensive overview of the basic theoretical and experimental concepts of materials science. Experimental aspects and laboratory details are highlighted in separate panels that enrich text and emphasize recent developments.Notably, new material in the third edition includes sections on important devices, aspects of non- periodic structures of matter, phase transitions, defects, superconductors and nanostructures.Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, materials science and electrical engineering. This edition has been thoroughly updated to maintain its usefulness as modern text and reference.
Chemical Bonding in Solids
1(20)
The Periodic Table of the Elements
1(3)
Covalent Bonding
4(5)
Ionic Bonding
9(4)
Metallic Bonding
13(2)
The Hydrogen Bond
15(1)
The van der Waals Bond
15(6)
Problems
16(5)
Structure of Solid Matter
21(30)
The Crystal Lattice
22(3)
Point Symmetry
25(2)
The 32 Crystal Classes (Point Groups)
27(1)
The Significance of Symmetry
28(3)
Simple Crystal Structures
31(5)
Phase Diagrams of Alloys
36(9)
Defects in Solids
45(6)
Problems
48(3)
Diffraction from Periodic Structures
51(34)
General Theory of Diffraction
51(6)
Periodic Structures and the Reciprocal Lattice
57(1)
The Scattering Conditions for Periodic Structures
58(2)
The Bragg Interpretation of the Laue Condition
60(3)
Brillouin Zones
63(1)
The Structure Factor
64(3)
Methods of Structure Analysis
67(18)
Problems
70(2)
Panel I: Diffraction Experiments with Various Particles
72(7)
Panel II: X-Ray Interferometry and X-Ray Topography
79(6)
Dynamics of Atoms in Crystals
85(30)
The Potential
86(1)
The Equation of Motion
87(1)
The Diatomic Linear Chain
88(5)
Scattering from Time-Varying Structures -- Phonon Spectroscopy
93(3)
Elastic Properties of Crystals
96(19)
Problems
106(3)
Panel III: Raman Spectroscopy
109(6)
Thermal Properties
115(22)
The Density of States
115(3)
The Thermal Energy of a Harmonic Oscillator
118(2)
The Specific Heat Capacity
120(2)
Effects Due to Anharmonicity
122(1)
Thermal Expansion
123(4)
Heat Conduction by Phonons
127(10)
Problems
131(2)
Panel IV: Experiments at Low Temperatures
133(4)
``Free'' Electrons in Solids
137(24)
The Free-Electron Gas in an Infinite Square-Well Potential
138(4)
The Fermi Gas at T=0 K
142(2)
Fermi Statistics
144(3)
The Specific Heat Capacity of Electrons in Metals
147(5)
Electrostatic Screening in a Fermi Gas - The Mott Transition
152(2)
Thermionic Emission of Electrons from Metals
154(7)
Problems
158(3)
The Electronic Bandstructure of Solids
161(30)
General Symmetry Properties
161(4)
The Nearly Free-Electron Approximation
165(4)
The Tight-Binding Approximation
169(6)
Examples of Bandstructures
175(4)
The Density of States
179(2)
Density of States in Non-Crystalline Solids
181(10)
Problems
184(2)
Panel V: Photoemission Spectroscopy
186(5)
Magnetism
191(40)
Diamagnetism and Paramagnetism
191(5)
The Exchange Interaction
196(3)
Exchange Interaction Between Free Electrons
199(2)
The Band Model of Ferromagnetism
201(4)
The Temperature Behavior of a Ferromagnet in the Band Model
205(4)
Ferromagnetic Coupling for Localized Electrons
209(2)
Antiferromagnetism
211(4)
Spin Waves
215(16)
Problems
219(2)
Panel VI: Magnetostatic Spin Waves
221(6)
Panel VII: Surface Magnetism
227(4)
Motion of Electrons and Transport Phenomena
231(36)
Motion of Electrons in Bands and the Effective Mass
231(4)
Currents in Bands and Holes
235(2)
Scattering of Electrons in Bands
237(4)
The Boltzmann Equation and Relaxation Time
241(4)
The Electrical Conductivity of Metals
245(6)
Thermoelectric Effects
251(3)
The Wiedemann-Franz Law
254(2)
Electrical Conductivity of Localized Electrons
256(11)
Problems
258(2)
Panel VIII: Quantum Oscillations and the Topology of Fermi Surfaces
260(7)
Superconductivity
267(80)
Some Fundamental Phenomena Associated with Superconductivity
267(5)
Phenomenological Description by Means of the London Equations
272(3)
Instability of the ``Fermi Sea'' and Cooper Pairs
275(5)
The BCS Ground State
280(8)
The Excitation Spectrum of a Superconductor
288(5)
Consequences of the BCS Theory and Comparison with Experimental Results
293(4)
Supercurrents and Critical Currents
297(3)
Coherence of the BCS Ground State and the Meissner-Ochsenfeld Effect
300(5)
Quantization of Magnetic Flux
305(4)
Type II Superconductors
309(7)
``High-Temperature'' Superconductors
316(31)
Problems
325(3)
Panel IX: One-Electron Tunneling in Superconductor Junctions
328(10)
Panel X: Cooper-Pair Tunneling -- The Josephson Effect
338(9)
Dielectric Properties of Materials
347(44)
The Dielectric Function
347(3)
Absorption of Electromagnetic Radiation
350(3)
The Dielectric Function for a Harmonic Oscillator
353(2)
Longitudinal and Transverse Normal Modes
355(3)
Surface Waves on a Dielectric
358(2)
Reflectivity of a Dielectric Half-Space
360(1)
The Local Field
361(2)
The Polarization Catastrophe and Ferroelectrics
363(2)
The Free-Electron Gas
365(2)
Interband Transitions
367(7)
Excitons
374(2)
Dielectric Energy Losses of Electrons
376(15)
Problems
379(4)
Panel XI: Spectroscopy with Photons and Electrons
383(3)
Panel XII: Infrared Spectroscopy
386(3)
Panel XIII: The Frustrated Total Reflection Method
389(2)
Semiconductors
391(92)
Data for a Number of Important Semiconductors
392(4)
Charge Carrier Density in Intrinsic Semiconductors
396(4)
Doping of Semiconductors
400(4)
Carrier Densities in Doped Semiconductors
404(5)
Conductivity of Semiconductors
409(6)
The p-n Junction and the Metal/Semiconductor Schottky Contact
415(16)
Semiconductor Heterostructures and Superlattices
431(13)
Important Semiconductor Devices
444(39)
Problems
458(3)
Panel XIV: The Hall Effect
461(3)
Panel XV: Cyclotron Resonance in Semiconductors
464(3)
Panel XVI: Shubnikov-de Haas Oscillations and Quantum Hall Effect
467(9)
Panel XVII: Semiconductor Epitaxy
476(7)
References 483(12)
Subject Index 495