Atnaujinkite slapukų nuostatas

El. knyga: Spatial Network Data: Concepts and Techniques for Summarization

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This brief explores two of the main challenges of spatial network data analysis: the many connected components in the spatial network and the many candidates that have to be processed. Within this book, these challenges are conceptualized, well-defined problems are explored, and critical techniques are discussed.
The process of summarizing spatial network data entails finding a compact description or representation of observations or activities on large spatial or spatiotemporal networks. However, summarizing spatial network data can be computationally challenging for various reasons, depending on the domain. The content has applications for professionals, organizations, and researchers in transportation safety, public safety, public health, disaster response, and related fields.

1 Introduction
1(8)
1.1 Summarizing Different Genres of Data
1(3)
1.2 Illustrative Application Domains
4(2)
1.3 Computational Challenges
6(3)
References
6(3)
2 Many Connected Components
9(22)
2.1 Introduction
9(5)
2.1.1 An Illustrative Application Domain: Crime Analysis
11(1)
2.1.2 State of the Art
12(2)
2.1.3 Outline of the
Chapter
14(1)
2.2 Basic Concepts and Problem Statement
14(3)
2.2.1 Basic Concepts
14(1)
2.2.2 Problem Statement
15(2)
2.3 Spatial Network Activity Summarization
17(9)
2.3.1 Computational Structure of Spatial Network Activity Summarization
17(1)
2.3.2 Proof of NP-Completeness
18(2)
2.3.3 Trend: The K-Main Routes Algorithm
20(6)
2.4 Case Study
26(1)
2.5 Summary
27(4)
References
27(4)
3 Many Candidates
31(18)
3.1 Introduction
31(3)
3.1.1 Challenges
32(1)
3.1.2 Current State-of-the-Art
32(2)
3.1.3 Outline of the
Chapter
34(1)
3.2 Basic Concepts and Problem Statement
34(3)
3.2.1 Basic Concepts
34(1)
3.2.2 Problem Statement
35(2)
3.3 Trends
37(6)
3.3.1 Naive Significant Route Miner (NaiveSRM)
37(1)
3.3.2 Significant Route Miner with Likelihood Pruning and Monte Carlo Speedup (SRM)
38(4)
3.3.3 Dynamic Segmentation
42(1)
3.4 Case Study
43(1)
3.5 Discussion
44(1)
3.6 Summary
45(4)
References
46(3)
4 Summary
49