Atnaujinkite slapukų nuostatas

Spatio-Temporal Data Streams 1st ed. 2016 [Minkštas viršelis]

  • Formatas: Paperback / softback, 107 pages, aukštis x plotis: 235x155 mm, weight: 454 g, 28 Illustrations, black and white; XIV, 107 p. 28 illus., 1 Paperback / softback
  • Serija: SpringerBriefs in Computer Science
  • Išleidimo metai: 27-Aug-2016
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1493965735
  • ISBN-13: 9781493965731
  • Formatas: Paperback / softback, 107 pages, aukštis x plotis: 235x155 mm, weight: 454 g, 28 Illustrations, black and white; XIV, 107 p. 28 illus., 1 Paperback / softback
  • Serija: SpringerBriefs in Computer Science
  • Išleidimo metai: 27-Aug-2016
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1493965735
  • ISBN-13: 9781493965731
This SpringerBrief presents the fundamental concepts of a specialized class of data stream, spatio-temporal data streams, and demonstrates their distributed processing using Big Data frameworks and platforms. It explores a consistent framework which facilitates a thorough understanding of all different facets of the technology, from basic definitions to state-of-the-art techniques. Key topics include spatio-temporal continuous queries, distributed stream processing, SQL-like language embedding, and trajectory stream clustering. 
 
Over the course of the book, the reader will become familiar with spatio-temporal data streams management and data flow processing, which enables the analysis of huge volumes of location-aware continuous data streams. Applications range from mobile object tracking and real-time intelligent transportation systems to traffic monitoring and complex event processing.
 
Spatio-Temporal Data Streams is a valuable resource for researchers studying spatio-temporal data streams and Big Data analytics, as well as data engineers and data scientists solving data management and analytics problems associated with this class of data.


1 Introduction
1(16)
1.1 From Databases to Data Streams
1(4)
1.2 Data Stream Management Systems---An Overview
5(3)
1.3 Data Stream Mining and Knowledge Discovery---An Overview
8(9)
References
12(5)
2 Spatio-Temporal Continuous Queries
17(30)
2.1 Foundation of Continuous Query Processing
17(7)
2.1.1 Running Example
20(4)
2.2 Stream Windows
24(5)
2.2.1 Time-Based Window
25(2)
2.2.2 Tuple-Based Window
27(1)
2.2.3 Predicate-Based Window
28(1)
2.3 OCEANUS---A Prototype of Spatio-Temporal DSMS
29(5)
2.3.1 The Type System
32(2)
2.4 Operators
34(2)
2.4.1 Lifting Operations to Spatio-Temporal Streaming Data Types
34(2)
2.5 Implementation
36(11)
2.5.1 User-Defined Aggregate Functions
37(3)
2.5.2 SQL-Like Language Embedding: CSQL
40(3)
References
43(4)
3 Spatio-Temporal Data Streams and Big Data Paradigm
47(24)
3.1 Background
47(3)
3.2 MobyDick--A Prototype of Distributed Framework for Big Mobility Data Processing and Analytics
50(11)
3.2.1 Data Model
50(6)
3.2.2 Apache Flink
56(2)
3.2.3 Spatio-Temporal Queries
58(3)
3.3 Related Work
61(4)
3.3.1 Distributed Spatial and Spatio-Temporal Batch Systems
62(1)
3.3.2 Centralized DSMS-Based Systems
63(1)
3.3.3 Distributed DSMS-Based Systems
64(1)
3.4 Final Remarks
65(6)
References
66(5)
4 Spatio-Temporal Data Stream Clustering
71(34)
4.1 Introduction
71(5)
4.1.1 Spatio-Temporal Clustering
72(4)
4.2 Data Stream Clustering
76(2)
4.3 Trajectory Stream Clustering
78(21)
4.3.1 Incremental Trajectory Clustering Using Micro-and Macro-Clustering
78(6)
4.3.2 CTraStream
84(9)
4.3.3 Spatial Quincunx Lattices Based Clustering
93(6)
4.4 Bibliographic Notes
99(6)
References
100(5)
Index 105