List of Figures |
|
xvii | |
List of Tables |
|
xxiii | |
Preface |
|
xxv | |
Abbreviations |
|
xxix | |
The Authors |
|
xxxi | |
1 Why spatio-temporal epidemiology? |
|
1 | (16) |
|
|
1 | (1) |
|
1.2 Health-exposure models |
|
|
2 | (1) |
|
|
2 | (1) |
|
1.2.2 A new world of uncertainty |
|
|
3 | (1) |
|
1.3 Dependencies over space and time |
|
|
3 | (3) |
|
|
4 | (2) |
|
1.4 Examples of spatio-temporal epidemiological analyses |
|
|
6 | (3) |
|
1.5 Bayesian hierarchical models |
|
|
9 | (3) |
|
1.5.1 A hierarchical approach to modelling spatio-temporal data |
|
|
10 | (1) |
|
1.5.2 Dealing with high-dimensional data |
|
|
10 | (2) |
|
|
12 | (2) |
|
1.7 Good spatio-temporal modelling approaches |
|
|
14 | (1) |
|
|
15 | (2) |
2 Modelling health risks |
|
17 | (30) |
|
|
17 | (1) |
|
2.2 Types of epidemiological study |
|
|
17 | (1) |
|
|
18 | (4) |
|
|
19 | (1) |
|
2.3.2 Population attributable risk |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.3.4 Relationship between odds ratios and relative risk |
|
|
21 | (1) |
|
2.3.5 Odds ratios in case-control studies |
|
|
22 | (1) |
|
2.4 Standardised mortality ratio (SMR) |
|
|
22 | (2) |
|
2.4.1 Rates and expected numbers |
|
|
23 | (1) |
|
2.5 Generalised linear models |
|
|
24 | (3) |
|
|
25 | (1) |
|
|
25 | (1) |
|
2.5.3 Likelihood ratio tests |
|
|
25 | (1) |
|
2.5.4 Link functions and error distributions |
|
|
26 | (1) |
|
|
27 | (1) |
|
2.6 Generalised additive models |
|
|
27 | (4) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
2.7 Generalised estimating equations |
|
|
31 | (2) |
|
2.8 Poisson models for count data |
|
|
33 | (4) |
|
|
33 | (2) |
|
|
35 | (2) |
|
2.9 Estimating relative risks in relation to exposures |
|
|
37 | (3) |
|
2.10 Modelling the cumulative effects of exposure |
|
|
40 | (2) |
|
2.11 Logistic models for case-control studies |
|
|
42 | (2) |
|
|
44 | (1) |
|
|
44 | (3) |
3 The importance of uncertainty |
|
47 | (14) |
|
|
47 | (1) |
|
3.2 The wider world of uncertainty |
|
|
48 | (1) |
|
3.3 Quantitative uncertainty |
|
|
49 | (2) |
|
|
50 | (1) |
|
|
51 | (1) |
|
3.4 Methods for assessing uncertainty |
|
|
51 | (2) |
|
3.4.1 Sensitivity analysis |
|
|
51 | (1) |
|
3.4.2 Taylor series expansion |
|
|
52 | (1) |
|
3.4.3 Monte Carlo sampling |
|
|
52 | (1) |
|
|
53 | (1) |
|
3.5 Quantifying uncertainty |
|
|
53 | (6) |
|
|
54 | (2) |
|
|
56 | (1) |
|
3.5.3 Information and uncertainty |
|
|
57 | (2) |
|
3.5.4 Decomposing uncertainty with entropy |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
4 Embracing uncertainty: the Bayesian approach |
|
61 | (14) |
|
|
61 | (1) |
|
4.2 Introduction to Bayesian inference |
|
|
62 | (1) |
|
|
63 | (3) |
|
4.4 Using the posterior for inference |
|
|
66 | (1) |
|
|
66 | (1) |
|
4.6 Transformations of parameters |
|
|
67 | (1) |
|
4.6.1 Prior distributions |
|
|
67 | (1) |
|
|
67 | (1) |
|
4.6.3 Posterior distributions |
|
|
67 | (1) |
|
|
68 | (3) |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
4.7.7 Nuisance parameters |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
71 | (4) |
5 The Bayesian approach in practice |
|
75 | (16) |
|
|
75 | (1) |
|
5.2 Analytical approximations |
|
|
75 | (1) |
|
5.3 Markov Chain Monte Carlo (MCMC) |
|
|
76 | (4) |
|
5.3.1 Metropolis-Hastings algorithm |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
5.4 Using samples for inference |
|
|
80 | (1) |
|
|
80 | (3) |
|
|
83 | (4) |
|
|
84 | (3) |
|
|
87 | (1) |
|
|
87 | (4) |
6 Strategies for modelling |
|
91 | (30) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (2) |
|
|
94 | (1) |
|
6.4 Generalised linear mixed models |
|
|
95 | (2) |
|
6.5 Linking exposure and health models |
|
|
97 | (5) |
|
6.5.1 Two-stage approaches |
|
|
99 | (1) |
|
6.5.2 Multiple imputation |
|
|
100 | (2) |
|
6.6 Model selection and comparison |
|
|
102 | (7) |
|
6.6.1 Effect of selection on properties of estimators |
|
|
102 | (4) |
|
6.6.2 Selection procedures |
|
|
106 | (3) |
|
6.7 What about the p-value? |
|
|
109 | (2) |
|
6.8 Comparison of models - Bayes factors |
|
|
111 | (2) |
|
6.9 Bayesian model averaging |
|
|
113 | (5) |
|
|
116 | (2) |
|
|
118 | (1) |
|
|
119 | (2) |
7 Is 'real' data always quite so real? |
|
121 | (18) |
|
|
121 | (1) |
|
|
122 | (3) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (4) |
|
7.3.1 Classical measurement error |
|
|
126 | (1) |
|
7.3.2 Berkson measurement error |
|
|
126 | (1) |
|
7.3.3 Attenuation and bias |
|
|
127 | (1) |
|
|
128 | (1) |
|
7.4 Preferential sampling |
|
|
129 | (6) |
|
7.4.1 A method for mitigating the effects of preferential sampling |
|
|
132 | (3) |
|
|
135 | (1) |
|
|
136 | (3) |
8 Spatial patterns in disease |
|
139 | (18) |
|
|
139 | (4) |
|
|
140 | (1) |
|
8.1.2 Empirical Bayes smoothing |
|
|
140 | (3) |
|
8.2 The Markov random field (MRF)t |
|
|
143 | (4) |
|
8.3 The conditional autoregressive (CAR) model |
|
|
147 | (2) |
|
8.3.1 The intrinsic conditional autoregressive (ICAR) model |
|
|
148 | (1) |
|
8.3.2 The simultaneous autoregressive (SAR) model |
|
|
149 | (1) |
|
8.4 Spatial models for disease mapping |
|
|
149 | (5) |
|
8.4.1 Poisson-lognormal models |
|
|
149 | (5) |
|
|
154 | (1) |
|
|
154 | (3) |
9 From points to fields: modelling environmental hazards over space |
|
157 | (42) |
|
|
157 | (1) |
|
9.2 A brief history of spatial modelling |
|
|
157 | (1) |
|
9.3 Exploring spatial data |
|
|
158 | (3) |
|
9.3.1 Transformations and units of measurement |
|
|
159 | (2) |
|
9.4 Modelling spatial data |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (2) |
|
9.7 Stationary and isotropic spatial processes |
|
|
165 | (1) |
|
|
166 | (4) |
|
|
168 | (1) |
|
|
168 | (2) |
|
9.9 Fitting variogram models |
|
|
170 | (2) |
|
|
172 | (2) |
|
9.11 Extensions of simple kriging |
|
|
174 | (4) |
|
|
175 | (1) |
|
9.11.2 Trans-Gaussian kriging |
|
|
175 | (1) |
|
9.11.3 Non-linear kriging |
|
|
176 | (1) |
|
9.11.4 Model-based kriging |
|
|
176 | (1) |
|
|
177 | (1) |
|
9.12 A hierarchical model for spatially varying exposures |
|
|
178 | (6) |
|
|
179 | (1) |
|
9.12.2 Prediction at unmeasured locations |
|
|
180 | (4) |
|
9.13 INLA and spatial modelling in a continuous domain |
|
|
184 | (6) |
|
9.13.1 Implementing the SPDE approach |
|
|
185 | (5) |
|
9.14 Non-stationary random fields |
|
|
190 | (5) |
|
9.14.1 Geometric and zonal anisotropy |
|
|
190 | (2) |
|
9.14.2 Moving window kriging |
|
|
192 | (1) |
|
9.14.3 Convolution approach |
|
|
193 | (2) |
|
|
195 | (1) |
|
|
195 | (4) |
10 Why time also matters |
|
199 | (28) |
|
|
199 | (1) |
|
10.2 Time series epidemiology |
|
|
199 | (2) |
|
|
200 | (1) |
|
10.2.2 Known risk factors |
|
|
200 | (1) |
|
10.2.3 Unknown risk factors |
|
|
201 | (1) |
|
10.3 Time series modelling |
|
|
201 | (5) |
|
10.3.1 Low-pass filtering |
|
|
204 | (2) |
|
10.4 Modelling the irregular components |
|
|
206 | (4) |
|
10.4.1 Stationary processes |
|
|
207 | (1) |
|
10.4.2 Models for irregular components |
|
|
207 | (3) |
|
10.5 The spectral representation theorem and Bochner's lemmas |
|
|
210 | (3) |
|
10.5.1 The link between covariance and spectral analysis |
|
|
212 | (1) |
|
|
213 | (5) |
|
10.6.1 Exponential smoothing |
|
|
213 | (1) |
|
|
214 | (1) |
|
10.6.3 Forecasting using ARMA models |
|
|
215 | (3) |
|
|
218 | (2) |
|
10.7.1 Normal Dynamic Linear Models (DLMs) |
|
|
218 | (2) |
|
10.8 A hierarchical model for temporally varying exposures |
|
|
220 | (4) |
|
|
224 | (1) |
|
|
225 | (2) |
11 The interplay between space and time in exposure assessment |
|
227 | (24) |
|
|
227 | (1) |
|
|
227 | (2) |
|
11.3 Spatio-temporal models |
|
|
229 | (7) |
|
|
231 | (4) |
|
11.3.2 Non-separable processest |
|
|
235 | (1) |
|
11.4 Dynamic linear models for space and time |
|
|
236 | (2) |
|
11.5 An empirical Bayes approach |
|
|
238 | (6) |
|
11.6 A hierarchical model for spatio-temporal exposure data |
|
|
244 | (2) |
|
11.7 Approaches to modelling non-separable processes |
|
|
246 | (2) |
|
|
248 | (1) |
|
|
248 | (3) |
12 Roadblocks on the way to causality: exposure pathways, aggregation and other sources of bias |
|
251 | (18) |
|
|
251 | (1) |
|
|
252 | (2) |
|
|
254 | (4) |
|
12.3.1 Individual level model |
|
|
254 | (1) |
|
12.3.2 Aggregation if individual exposures are known |
|
|
255 | (1) |
|
12.3.3 Aggregation if the individual exposures are not known |
|
|
256 | (2) |
|
12.4 Acknowledging ecological bias |
|
|
258 | (1) |
|
12.4.1 Aggregate approach |
|
|
258 | (1) |
|
12.4.2 Parametric approach |
|
|
258 | (1) |
|
|
259 | (2) |
|
12.5.1 Concentration and exposure response functions |
|
|
259 | (2) |
|
12.6 Personal exposure models |
|
|
261 | (5) |
|
12.6.1 Micro-environments |
|
|
262 | (4) |
|
|
266 | (1) |
|
|
266 | (3) |
13 Better exposure measurements through better design |
|
269 | (30) |
|
|
269 | (1) |
|
|
270 | (3) |
|
|
273 | (2) |
|
13.4 Geometry-based designs |
|
|
275 | (1) |
|
13.5 Probability-based designs |
|
|
276 | (3) |
|
|
279 | (1) |
|
13.6.1 Regression parameter estimation |
|
|
280 | (1) |
|
13.7 An entropy-based approach |
|
|
280 | (13) |
|
13.7.1 The design of a network |
|
|
283 | (5) |
|
13.7.2 Redesigning networks |
|
|
288 | (5) |
|
13.8 Implementation challenges |
|
|
293 | (2) |
|
|
295 | (1) |
|
|
295 | (4) |
14 New frontiers |
|
299 | (20) |
|
|
299 | (1) |
|
14.2 Non-stationary fields |
|
|
300 | (8) |
|
14.2.1 Spatial deformations |
|
|
300 | (4) |
|
14.2.2 Dimension expansiont |
|
|
304 | (4) |
|
14.3 Physical-statistical modelling |
|
|
308 | (3) |
|
|
309 | (2) |
|
14.4 The problem of extreme values |
|
|
311 | (7) |
|
|
318 | (1) |
|
|
318 | (1) |
Appendix 1: Distribution theory |
|
319 | (6) |
|
|
319 | (1) |
|
A.2 The multivariate and matric normal distributions |
|
|
319 | (6) |
|
A.2.1 Multivariate and matric t-distribution |
|
|
320 | (1) |
|
A.2.2 The Wishart distribution |
|
|
321 | (1) |
|
A.2.3 Inverted Wishart distribution |
|
|
321 | (1) |
|
|
322 | (1) |
|
A.2.5 Bartlett decomposition |
|
|
322 | (1) |
|
A.2.6 Generalized Inverted Wishart |
|
|
322 | (3) |
Appendix 2: Entropy decomposition |
|
325 | (2) |
|
|
325 | (2) |
References |
|
327 | (22) |
Index |
|
349 | (8) |
Author index |
|
357 | |