Atnaujinkite slapukų nuostatas

El. knyga: Spectral Geometry

Edited by , Edited by , Edited by , Edited by
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume contains the proceedings of the International Conference on Spectral Geometry, held July 19-23, 2010, at Dartmouth College, Dartmouth, New Hampshire. Eigenvalue problems involving the Laplace operator on manifolds have proven to be a consistently fertile area of geometric analysis with deep connections to number theory, physics, and applied mathematics. Key questions include the measures to which eigenfunctions of the Laplacian on a Riemannian manifold condense in the limit of large eigenvalue, and the extent to which the eigenvalues and eigenfunctions of a manifold encode its geometry. In this volume, research and expository articles, including those of the plenary speakers Peter Sarnak and Victor Guillemin, address the flurry of recent progress in such areas as quantum unique ergodicity, isospectrality, semiclassical measures, the geometry of nodal lines of eigenfunctions, methods of numerical computation, and spectra of quantum graphs. This volume also contains mini-courses on spectral theory for hyperbolic surfaces, semiclassical analysis, and orbifold spectral geometry that prepared the participants, especially graduate students and young researchers, for conference lectures.
Preface vii
PART I EXPOSITORY LECTURES
Introduction to Spectral Theory on Hyperbolic Surfaces
3(46)
David Borthwick
Orbifolds and their Spectra
49(24)
Carolyn Gordon
A brief introduction to semiclassical analysis
73(20)
Alejandro Uribe
Zuoqin Wang
PART II INVITED PAPERS
The dynamics of the Schrodinger flow from the point of view of semiclassical measures
93(24)
Nalini Anantharaman
Fabricio Macia
Dependence of the Spectrum of a Quantum Graph on Vertex Conditions and Edge Lengths
117(22)
Gregory Berkolaiko
Peter Kuchment
Investigating the spectral geometry of a soft wall
139(16)
Jeffrey Bouas
Stephen Fulling
Fernando Mera
Krishna Thapa
Cynthia Trendafilova
Jef Wagner
Equivariant Inverse Spectral Problems
155(12)
Emily B. Dryden
Victor Guillemin
Rosa Sena-Dias
Classical Equivalence and Quantum Equivalence of Magnetic Fields on Flat Tori
167(14)
Carolyn Gordon
William Kirwin
Dorothee Schueth
David Webb
A semiclassical heat trace expansion for the perturbed harmonic oscillator
181(14)
Victor Guillemin
Alejandro Uribe
Zuoqin Wang
Estimates on Neumann eigenfunctions at the boundary, and the "Method of Particular Solutions" for computing them
195(16)
Andrew Hassell
Alex Barnett
Recent progress on the Quantum Unique Ergodicity Conjecture
211(18)
Peter Sarnak
Lower bounds for volumes of nodal sets: an improvement of a result of Sogge-Zelditch
229(8)
Hamid Hezari
Zuoqin Wang
The nodal set of a finite sum of Maass cusp forms is a graph
237(6)
Chris Judge
Asymptotics of spectral quantities of Schrodinger operators
243(42)
Thomas Kappeler
Beat Schaad
Peter Topalov
On the nodal lines of random and deterministic Laplace eigenfunctions
285(14)
Igor Wigman
Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I
299
Steven Zelditch