Atnaujinkite slapukų nuostatas

El. knyga: Spectral Theory: Basic Concepts and Applications

  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 284
  • Išleidimo metai: 12-Mar-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030380021
  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 284
  • Išleidimo metai: 12-Mar-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030380021

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook offers a concise introduction to spectral theory, designed for newcomers to functional analysis. Curating the content carefully, the author builds to a proof of the spectral theorem in the early part of the book. Subsequent chapters illustrate a variety of application areas, exploring key examples in detail. Readers looking to delve further into specialized topics will find ample references to classic and recent literature.





Beginning with a brief introduction to functional analysis, the text focuses on unbounded operators and separable Hilbert spaces as the essential tools needed for the subsequent theory. A thorough discussion of the concepts of spectrum and resolvent follows, leading to a complete proof of the spectral theorem for unbounded self-adjoint operators. Applications of spectral theory to differential operators comprise the remaining four chapters. These chapters introduce the Dirichlet Laplacian operator, Schrödinger operators, operators on graphs, and the spectral theory of Riemannian manifolds.











Spectral Theory offers a uniquely accessible introduction to ideas that invite further study in any number of different directions. A background in real and complex analysis is assumed; the author presents the requisite tools from functional analysis within the text. This introductory treatment would suit a functional analysis course intended as a pathway to linear PDE theory. Independent later chapters allow for flexibility in selecting applications to suit specific interests within a one-semester course.

Recenzijos

The student will benefit from the many illustrative examples worked out in the book. The author succeeds, and the hope is that after working on some of the examples presented, the student will want to explore further applications. Additionally, the instructor may also find inspiration for individual study topics that dont require extensive prerequisites. (Valentin Keyantuo, Mathematical Reviews, February, 2023)

This is an excellent textbook, which shall be a very useful tool for anyone who is oriented to the applications of functional analysis, especially to partial differential equations. (Panagiotis Koumantos, zbMATH 1444.47001, 2020)

1 Introduction
1(4)
2 Hilbert Spaces
5(30)
2.1 Normed Vector Spaces
5(2)
2.2 Lp Spaces
7(2)
2.3 Bounded Linear Maps
9(6)
2.4 Hilbert Spaces
15(3)
2.5 Sobolev Spaces
18(6)
2.6 Orthogonality
24(3)
2.7 Orthonormal Bases
27(4)
2.8 Exercises
31(4)
3 Operators
35(32)
3.1 Unbounded Operators
35(2)
3.2 Adjoints
37(4)
3.3 Closed Operators
41(6)
3.4 Symmetry and Self-adjointness
47(10)
3.5 Compact Operators
57(5)
3.6 Exercises
62(5)
4 Spectrum and Resolvent
67(34)
4.1 Definitions and Examples
67(12)
4.2 Resolvent
79(7)
4.3 Spectrum of Self-adjoint Operators
86(3)
4.4 Spectral Theory of Compact Operators
89(7)
4.5 Exercises
96(5)
5 The Spectral Theorem
101(24)
5.1 Unitary Operators
102(5)
5.2 The Main Theorem
107(5)
5.3 Functional Calculus
112(3)
5.4 Spectral Decomposition
115(6)
5.5 Exercises
121(4)
6 The Laplacian with Boundary Conditions
125(58)
6.1 Self-adjoint Extensions
129(6)
6.2 Discreteness of Spectrum
135(8)
6.3 Regularity of Eigenfunctions
143(4)
6.4 Eigenvalue Computations
147(8)
6.5 Asymptotics of Dirichlet Eigenvalues
155(16)
6.6 Nodal Domains
171(3)
6.7 Isoperimetric Inequalities and Minimal Eigenvalues
174(5)
6.8 Exercises
179(4)
7 Schrodinger Operators
183(42)
7.1 Positive Potentials
184(10)
7.2 Relatively Bounded Perturbations
194(3)
7.3 Relatively Compact Perturbations
197(6)
7.4 Hydrogen Atom
203(4)
7.5 Semiclassical Asymptotics
207(7)
7.6 Periodic Potentials
214(6)
7.7 Exercises
220(5)
8 Operators on Graphs
225(20)
8.1 Combinatorial Laplacians
226(4)
8.2 Quantum Graphs
230(2)
8.3 Spectral Properties of Compact Quantum Graphs
232(2)
8.4 Eigenvalue Comparison
234(3)
8.5 Eigenvalue Asymptotics
237(5)
8.6 Exercises
242(3)
9 Spectral Theory on Manifolds
245(58)
9.1 Smooth Manifolds
245(5)
9.2 Riemannian Metrics
250(12)
9.3 The Laplacian
262(4)
9.4 Spectrum of a Compact Manifold
266(4)
9.5 Heat Equation
270(12)
9.6 Wave Propagation on Compact Manifolds
282(5)
9.7 Complete Manifolds and Essential Self-adjointness
287(4)
9.8 Essential Spectrum of Complete Manifolds
291(7)
9.9 Exercises
298(5)
A Background Material
303(28)
A.1 Measure and Integration
303(12)
A.2 Lp Spaces
315(5)
A.3 Fourier Transform
320(4)
A.4 Elliptic Regularity
324(7)
References 331(4)
Index 335
David Borthwick is Professor and Director of Graduate Studies in the Department of Mathematics at Emory University, Georgia, USA. His research interests are in spectral theory, global and geometric analysis, and mathematical physics. His monograph  Spectral Theory of Infinite-Area Hyperbolic Surfaces appears in Birkhäusers Progress in Mathematics, and his Introduction to Partial Differential Equations is published in Universitext.