Atnaujinkite slapukų nuostatas

El. knyga: Spectral Theory of Infinite-Area Hyperbolic Surfaces

  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 318
  • Išleidimo metai: 12-Jul-2016
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783319338774
  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 318
  • Išleidimo metai: 12-Jul-2016
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783319338774

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added.Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical lin

e, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution.The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields.Review of the first edition:"The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillar

mou, Mathematical Reviews, Issue 2008 h)

Introduction.- Hyperbolic Surfaces.- Selberg Theory for Finite-Area Hyperbolic Surfaces.- Spectral Theory for the Hyperbolic Plane.- Model Resolvents for Cylinders.- The Resolvent.- Spectral and Scattering Theory.- Resonances and Scattering Poles.- Growth Estimates and Resonance Bounds.- Selberg Zeta Function.- Wave Trace and Poisson Formula.- Resonance Asymptotics.- Inverse Spectral Geometry.- Patterson-Sullivan Theory.- Dynamical Approach to the Zeta Function.- Numerical Computations.- Appendix.- References.- Notation Guide.- Index.

"The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)

Recenzijos

"The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)

1 Introduction
1(6)
2 Hyperbolic Surfaces
7(40)
2.1 The Hyperbolic Plane
7(6)
2.2 Fuchsian Groups
13(6)
2.3 Geometrically Finite Groups
19(4)
2.4 Classification of Hyperbolic Ends
23(6)
2.5 Length Spectrum and Selberg's Zeta Function
29(5)
2.6 Hyperbolic Trigonometry
34(6)
2.7 Fenchel-Nielsen Coordinates
40(7)
3 Selberg Theory for Finite-Area Hyperbolic Surfaces
47(16)
3.1 Selberg's Trace Formula for Compact Surfaces
47(6)
3.2 Consequences of the Trace Formula
53(4)
3.3 Finite-Area Hyperbolic Surfaces
57(6)
4 Spectral Theory for the Hyperbolic Plane
63(18)
4.1 Resolvent
64(3)
4.2 Spectral Measure
67(1)
4.3 Generalized Eigenfunctions
68(5)
4.4 Scattering Matrix
73(8)
5 Model Resolvents for Cylinders
81(18)
5.1 Hyperbolic Cylinders
81(8)
5.2 Funnels
89(5)
5.3 Parabolic Cylinder
94(5)
6 The Resolvent
99(22)
6.1 Surfaces with Hyperbolic Ends
100(5)
6.2 Analytic Fredholm Theorem
105(2)
6.3 Continuation of the Resolvent
107(3)
6.4 Structure of the Resolvent Kernel
110(2)
6.5 Resolvent Structure for Surfaces with Cusps
112(3)
6.6 The Stretched Product
115(6)
7 Spectral and Scattering Theory
121(22)
7.1 Essential and Discrete Spectrum
121(2)
7.2 Absence of Embedded Eigenvalues
123(8)
7.3 Generalized Eigenfunctions
131(4)
7.4 Scattering Matrix
135(8)
8 Resonances and Scattering Poles
143(34)
8.1 Multiplicities of Resonances
144(2)
8.2 Structure of the Resolvent at a Resonance
146(4)
8.3 Scattering Poles
150(3)
8.4 Operator Logarithmic Residues
153(6)
8.5 Half-Integer Points
159(7)
8.6 Coincidence of Resonances and Scattering Poles
166(11)
9 Growth Estimates and Resonance Bounds
177(36)
9.1 Resonances and Zeros of Determinants
178(4)
9.2 Singular Value Estimates
182(3)
9.3 Resonance Counting
185(20)
9.4 Relative Scattering Determinant
205(8)
10 Selberg Zeta Function
213(34)
10.1 Regularized Traces
214(2)
10.2 Trace of the Spectral Resolution
216(6)
10.3 Resolvent Trace
222(13)
10.4 Structure of the Zeta Function
235(9)
10.5 Determinant of the Laplacian
244(3)
11 Wave Trace and Poisson Formula
247(22)
11.1 Regularized Wave Trace
249(1)
11.2 Model Wave Kernel
250(2)
11.3 Wave 0-Trace Formula
252(6)
11.4 Poisson Formula
258(11)
12 Resonance Asymptotics
269(28)
12.1 Wave Trace Singularity
269(1)
12.2 Global Lower Bound
270(3)
12.3 Lower Bound in Strips
273(3)
12.4 Weyl Formula for the Scattering Phase
276(5)
12.5 Sharp Geometric Upper Bounds
281(16)
13 Inverse Spectral Geometry
297(22)
13.1 Resonances and the Length Spectrum
298(2)
13.2 Isospectral Finiteness for Hyperbolic Surfaces
300(12)
13.3 Regularized Heat Invariants
312(7)
14 Patterson-Sullivan Theory
319(50)
14.1 A Measure on the Limit Set
320(8)
14.2 Ergodicity
328(8)
14.3 Hausdorff Measure of the Limit Set
336(4)
14.4 The First Resonance
340(7)
14.5 Prime Geodesic Theorem
347(6)
14.6 Refined Asymptotics of the Length Spectrum
353(5)
14.7 Lower Bound on Resonances in Logarithmic Regions
358(6)
14.8 Entropy and Escape Rate
364(5)
15 Dynamical Approach to the Zeta Function
369(28)
15.1 Schottky Groups
370(2)
15.2 Symbolic Dynamics
372(4)
15.3 Dynamical Zeta Function
376(5)
15.4 Growth Estimates
381(6)
15.5 Spectral Gap
387(7)
15.6 Improved Scattering Phase Asymptotic
394(3)
16 Numerical Computations
397(18)
16.1 Zeta Function Expansion
397(5)
16.2 Resonance Plots
402(5)
16.3 Resonance Distribution Conjectures
407(8)
A Appendix
415(32)
A.1 Entire Functions
415(7)
A.2 Distributions and Fourier Transforms
422(5)
A.3 Spectral Theory
427(7)
A.4 Singular Values, Traces, and Determinants
434(9)
A.5 Pseudodifferential Operators
443(4)
References 447(12)
Notation Guide 459(2)
Index 461
David Borthwick is Professor and Director of the Graduate Studies Department of Mathematics and Computer Science at Emory University, Georgia, USA.