Atnaujinkite slapukų nuostatas

Spectral Theory for Simply Periodic Solutions of the Sinh-Gordon Equation 2018 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 334 pages, aukštis x plotis: 235x155 mm, weight: 528 g, 7 Illustrations, black and white; VIII, 334 p. 7 illus., 1 Paperback / softback
  • Serija: Lecture Notes in Mathematics 2229
  • Išleidimo metai: 06-Dec-2018
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030012751
  • ISBN-13: 9783030012755
  • Formatas: Paperback / softback, 334 pages, aukštis x plotis: 235x155 mm, weight: 528 g, 7 Illustrations, black and white; VIII, 334 p. 7 illus., 1 Paperback / softback
  • Serija: Lecture Notes in Mathematics 2229
  • Išleidimo metai: 06-Dec-2018
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030012751
  • ISBN-13: 9783030012755

This book develops a spectral theory for the integrable system of 2-dimensional, simply periodic, complex-valued solutions u of the sinh-Gordon equation.  Such solutions (if real-valued) correspond to certain constant mean curvature surfaces in Euclidean 3-space.  Spectral data for such solutions are defined (following ideas of Hitchin and Bobenko) and the space of spectral data is described by an asymptotic characterization. Using methods of asymptotic estimates, the inverse problem for the spectral data is solved along a line, i.e. the solution u is reconstructed on a line from the spectral data.  Finally, a Jacobi variety and Abel map for the spectral curve are constructed and used to describe the change of the spectral data under translation of the solution u.  The book's primary audience will be research mathematicians interested in the theory of infinite-dimensional integrable systems, or in the geometry of constant mean curvature surfaces. 

 

Recenzijos

The book is useful for specialists studying periodic solutions to integrable nonlinear partial differential equations. (Dmitry E. Pelinovsky, Mathematical Reviews, October, 2019)

Part I Spectral Data
1 Introduction
3(18)
2 Minimal Immersions into the 3-Sphere and the Sinh-Gordon Equation
21(4)
3 Spectral Data for Simply Periodic Solutions of the Sinh-Gordon Equation
25(16)
Part II The Asymptotic Behavior of the Spectral Data
4 The Vacuum Solution
41(6)
5 The Basic Asymptotic of the Monodromy
47(24)
6 Basic Behavior of the Spectral Data
71(14)
7 The Fourier Asymptotic of the Monodromy
85(16)
8 The Consequences of the Fourier Asymptotic for the Spectral Data
101(12)
Part III The Inverse Problem for the Monodromy
9 Asymptotic Spaces of Holomorphic Functions
113(6)
10 Interpolating Holomorphic Functions
119(28)
11 Final Description of the Asymptotic of the Monodromy
147(14)
12 Non-special Divisors and the Inverse Problem for the Monodromy
161(14)
Part IV The Inverse Problem for Periodic Potentials (Cauchy Data)
13 Divisors of Finite Type
175(14)
14 Darboux Coordinates for the Space of Potentials
189(20)
15 The Inverse Problem for Cauchy Data Along the Real Line
209(12)
Part V The Jacobi Variety of the Spectral Curve
16 Estimate of Certain Integrals
221(18)
17 Asymptotic Behavior of 1-Forms on the Spectral Curve
239(20)
18 Construction of the Jacobi Variety for the Spectral Curve
259(28)
19 The Jacobi Variety and Translations of the Potential
287(16)
20 Asymptotics of Spectral Data for Potentials on a Horizontal Strip
303(4)
21 Perspectives
307(2)
A Some Infinite Sums and Products 309(12)
B Index of Notations 321(6)
References 327