Atnaujinkite slapukų nuostatas

Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry [Minkštas viršelis]

  • Formatas: Paperback / softback, 512 pages, aukštis x plotis x storis: 228x152x32 mm, weight: 794 g, Worked examples or Exercises
  • Serija: Cambridge Monographs on Mathematical Physics
  • Išleidimo metai: 07-Apr-1988
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521347866
  • ISBN-13: 9780521347860
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 512 pages, aukštis x plotis x storis: 228x152x32 mm, weight: 794 g, Worked examples or Exercises
  • Serija: Cambridge Monographs on Mathematical Physics
  • Išleidimo metai: 07-Apr-1988
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521347866
  • ISBN-13: 9780521347860
Kitos knygos pagal šią temą:
In the two volumes that comprise this work Roger Penrose and Wolfgang Rindler introduce the calculus of 2-spinors and the theory of twistors, and discuss in detail how these powerful and elegant methods may be used to elucidate the structure and properties of space-time. In volume 1, Two-spinor calculus and relativistic fields, the calculus of 2-spinors is introduced and developed. Volume 2, Spinor and twistor methods in space-time geometry, introduces the theory of twistors, and studies in detail how the theory of twistors and 2-spinors can be applied to the study of space-time. This work will be of great value to all those studying relativity, differential geometry, particle physics and quantum field theory from beginning graduate students to experts in these fields.

Recenzijos

"Topics covered include massless fields, the geometry of light rays, and the conformal structure of infinity. Twistorial applications abound and are presented in great detail. The approach here is to show how problems with the standard physical framework may be solved using new twistorial techniques." American Mathematics Monthly

Preface
Summary of volume 1
6. Twistors
7. Null congruences
8. Classification of curvature tensors
9. Conformal infinity
Appendix
References
Subject and author index
Index of symbols.