Atnaujinkite slapukų nuostatas

Stability of Elastic Multi-Link Structures 1st ed. 2022 [Minkštas viršelis]

  • Formatas: Paperback / softback, 141 pages, aukštis x plotis: 235x155 mm, weight: 244 g, 12 Illustrations, color; 4 Illustrations, black and white; VIII, 141 p. 16 illus., 12 illus. in color., 1 Paperback / softback
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 17-Jan-2022
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030863506
  • ISBN-13: 9783030863500
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 141 pages, aukštis x plotis: 235x155 mm, weight: 244 g, 12 Illustrations, color; 4 Illustrations, black and white; VIII, 141 p. 16 illus., 12 illus. in color., 1 Paperback / softback
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 17-Jan-2022
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030863506
  • ISBN-13: 9783030863500
Kitos knygos pagal šią temą:
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. 

There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.

1. Preliminaries.-
2. Exponential stability of a network of elastic and
thermoelastic materials.-
3. Exponential stability of a network of beams.-
4.
Stability of a tree-shaped network of strings and beams.-
5. Feedback
stabilization of a simplified model of fluid-structure interaction on a
tree.-
6. Stability of a graph of strings with local Kelvin-Voigt damping.-
Bibliography.