Atnaujinkite slapukų nuostatas

El. knyga: Stable Klingen Vectors and Paramodular Newforms

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2342
  • Išleidimo metai: 27-Dec-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031451775
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2342
  • Išleidimo metai: 27-Dec-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031451775

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book describes a novel approach to the study of Siegel modular forms of degree two with paramodular level. It introduces the family of stable Klingen congruence subgroups of GSp(4) and uses this family to obtain new relations between the Hecke eigenvalues and Fourier coefficients of paramodular newforms, revealing a fundamental dichotomy for paramodular representations. Among other important results, it includes a complete description of the vectors fixed by these congruence subgroups in all irreducible representations of GSp(4) over a nonarchimedean local field.

Siegel paramodular forms have connections with the theory of automorphic representations and the Langlands program, Galois representations, the arithmetic of abelian surfaces, and algorithmic number theory. Providing a useful standard source on the subject, the book will be of interest to graduate students and researchers working in the above fields.
- Introduction. - Part I Local Theory. - 2. Background. - 3. Stable
Klingen Vectors. - 4. Some Induced Representations. - 5. Dimensions. -
6. Hecke Eigenvalues and Minimal Levels. - 7. The Paramodular Subspace. -
8. Further Results About Generic Representations. - 9. Iwahori-Spherical
Representations. - Part II Siegel Modular Forms. - 10. Background on Siegel
Modular Forms. - 11. Operators on Siegel Modular Forms. - 12. Hecke
Eigenvalues and Fourier Coefficients.
Jennifer Johnson-Leung is a professor in the Department of Mathematics and Statistical Science at the University of Idaho. She received her PhD from the California Institute of Technology in 2005. Her research focuses on Siegel modular forms, Iwasawa theory, and special values of L-functions. Brooks Roberts is a member of the Department of Mathematics and Statistical Science at the University of Idaho. He received his PhD from the University of Chicago in 1992. He is a co-author of the book Local Newforms for GSp(4) (Springer). His research focuses on Siegel modular forms, representation theory, and the theta correspondence. Ralf Schmidt is a professor in the Department of Mathematics at the University of North Texas. He received his PhD from Hamburg University in 1998. He is a co-author of the books Transfer of Siegel Cusp Forms of Degree 2 (Memoirs of the AMS), LocalNewforms for GSp(4) (Springer), and Elements of the Representation Theory of the Jacobi Group (Birkhäuser). His research focuses on Siegel modular forms and representation theory.