Atnaujinkite slapukų nuostatas

El. knyga: Stable Stems

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The author presents a detailed analysis of 2-complete stable homotopy groups, both in the classical context and in the motivic context over $\mathbb C$. He uses the motivic May spectral sequence to compute the cohomology of the motivic Steenrod algebra over $\mathbb C$ through the 70-stem. He then uses the motivic Adams spectral sequence to obtain motivic stable homotopy groups through the 59-stem. He also describes the complete calculation to the 65-stem, but defers the proofs in this range to forthcoming publications.

In addition to finding all Adams differentials, the author also resolves all hidden extensions by $2$, $\eta $, and $\nu $ through the 59-stem, except for a few carefully enumerated exceptions that remain unknown. The analogous classical stable homotopy groups are easy consequences.

The author also computes the motivic stable homotopy groups of the cofiber of the motivic element $\tau $. This computation is essential for resolving hidden extensions in the Adams spectral sequence. He shows that the homotopy groups of the cofiber of $\tau $ are the same as the $E_2$-page of the classical Adams-Novikov spectral sequence. This allows him to compute the classical Adams-Novikov spectral sequence, including differentials and hidden extensions, in a larger range than was previously known.
Introduction
The cohomology of the motivic Steenrod algebra
Differentials in the Adams spectral sequence
Hidden extensions in the Adams spectral sequence
The cofiber of $\tau $
Reverse engineering the Adams-Novikov spectral sequence
Tables
Bibliography
Index.
Daniel C. Isaksen, Wayne State University, Detroit, MI.