Atnaujinkite slapukų nuostatas

El. knyga: Stacks Project Expository Collection

Edited by (Université du Luxembourg), Edited by (Columbia University, New York), Edited by (University of Michigan, Ann Arbor)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.

SPEC collects expository articles on the geometry of algebraic spaces and stacks. The articles bring researchers up to speed on recent developments and include detailed accounts in modern language of many results previously unavailable or only implicit in the literature, and where applicable use the Stacks project for preliminary material.

Daugiau informacijos

A collection of expository articles on modern topics in algebraic geometry, focusing on the geometry of algebraic spaces and stacks.
List of Contributors
xi
Preface xiii
1 Projectivity of the moduli of curves
1(43)
Raymond Cheng
Carl Lian
Takumi Murayama
1.1 Stable curves
2(5)
1.2 Nakai--Moishezon criterion for ampleness
7(4)
1.3 Positivity of invertible sheaves
11(4)
1.4 Nef locally free sheaves
15(9)
1.5 Ampleness lemma
24(5)
1.6 Nefness for families of nodal curves
29(10)
1.7 Projectivity of the moduli of curves
39(5)
2 The stack of admissible covers is algebraic
44(46)
Elsa Corniani
Neeraj Deshmukh
Brett Nasserden
Emanuel Reinecke
Nawaz Sultani
Rachel Webb
2.1 Introduction
44(4)
2.2 Setup
48(13)
2.3 Admissible G-covers
61(29)
3 Projectivity of the moduli space of vector bundles on a curve
90(36)
Jarod Alper
Pieter Belmans
Daniel Bragg
Jason Liang
Tuomas Tajakka
3.1 The moduli stack of all vector bundles
91(3)
3.2 Semistability
94(7)
3.3 Good moduli spaces
101(8)
3.4 Determinantal line bundles
109(6)
3.5 Projectivity
115(11)
4 Boundedness of semistable sheaves
126(37)
Haoyang Guo
Sanal Shivaprasad
Dylan Spence
Yueqiao Wu
4.1 Introduction
126(3)
4.2 Preliminaries
129(14)
4.3 Bogomolov's inequality
143(7)
4.4 Restriction to hypersurfaces and Bogomolov's inequality
150(9)
4.5 Boundedness of torsion-free sheaves
159(4)
5 Theorem of the Base
163(31)
Raymond Cheng
Lena Ji
Matt Larson
Noah Olander
5.1 The Picard functor
165(2)
5.2 Components of the Picard functor
167(4)
5.3 Castelnuovo-Mumford regularity
171(7)
5.4 Boundedness
178(1)
5.5 Finiteness of cycles modulo numerical equivalence
179(3)
5.6 Alterations in families
182(2)
5.7 Theorem of the Base
184(4)
5.8 Examples of Picard schemes
188(6)
6 Weil restriction for schemes and beyond
194(28)
Lena Ji
Shizhang Li
Patrick McFaddin
Drew Moore
Matthew Stevenson
6.1 Weil restriction of schemes
194(3)
6.2 Basic properties of Weil restriction
197(4)
6.3 Geometric connectedness
201(4)
6.4 Examples
205(7)
6.5 Weil restriction of algebraic spaces
212(5)
6.6 Olsson's theorem
217(5)
7 Heights over finitely generated fields
222(33)
Stephen McKean
Soumya Sankar
7.1 Introduction
222(2)
7.2 Generalized global fields
224(6)
7.3 Heights
230(6)
7.4 Analytic background
236(5)
7.5 Arithmetic intersection theory and Arakelov theory
241(7)
7.6 Moriwaki heights
248(7)
8 An explicit self-duality
255(13)
Nikolas Kuhn
Devlin Mallory
Vaidehee Thatte
Kirsten Wickelgren
8.1 Introduction
255(2)
8.2 Commutative algebra preliminaries
257(6)
8.3 The explicit isomorphism
263(5)
9 Tannakian reconstruction of coalgebroids Yifei Zhao
268
9.1 Introduction
268(2)
9.2 Tannakian adjunction
270(9)
9.3 Reconstruction
279(6)
9.4 The embedding problem
285
Pieter Belmans is Assistant Professor of Mathematics at the University of Luxembourg. He studies algebraic geometry and noncommutative algebra from the point-of-view of derived categories. He developed the infrastructure that runs the Stacks project. Wei Ho is Associate Professor of Mathematics at the University of Michigan. Her research interests are primarily in arithmetic geometry, number theory, and algebraic geometry. She first became involved with the Stacks project during her postdoc at Columbia University. Aise Johan de Jong is Professor at Columbia University. He has worked at Harvard University, Princeton University, and MIT. Currently he spends most of his research time advising his graduate students and working on the Stacks project. He received the 2022 AMS Leroy P. Steele Prize for Mathematical Exposition for his work on the Stacks project.