Atnaujinkite slapukų nuostatas

El. knyga: Stair-Step Approach in Mathematics

  • Formatas: EPUB+DRM
  • Serija: Problem Books in Mathematics
  • Išleidimo metai: 23-Jan-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319706320
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Problem Books in Mathematics
  • Išleidimo metai: 23-Jan-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319706320
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is intended as a teacher’s manual and as an independent-study handbook for students and mathematical competitors. Based on a traditional teaching philosophy and a non-traditional writing approach (the stair-step method), this book consists of new problems with solutions created by the authors. The main idea of this approach is to start from relatively easy problems and “step-by-step” increase the level of difficulty toward effectively maximizing students' learning potential.

In addition to providing solutions, a separate table of answers is also given at the end of the book. A broad view of mathematics is covered, well beyond the typical elementary level, by providing more in depth treatment of Geometry and Trigonometry, Number Theory, Algebra, Calculus, and Combinatorics.

Recenzijos

This book is original, enticing, and highly stimulating, and it is a useful addition to the competition-oriented literature. (Stephen Rout, The Mathematical Gazette, Vol. 104 (560), July, 2020)

1 Geometry and Trigonometry
1(18)
1.1 Problem Set 1
2(1)
1.2 Problem Set 2
3(1)
1.3 Problem Set 3
4(1)
1.4 Problem Set 4
5(1)
1.5 Problem Set 5
5(2)
1.6 Problem Set 6
7(1)
1.7 Problem Set 7
8(1)
1.8 Problem Set 8
8(1)
1.9 Problem Set 9
9(1)
1.10 Problem Set 10
10(1)
1.11 Problem Set 11
11(1)
1.12 Problem Set 12
12(1)
1.13 Problem Set 13
13(2)
1.14 Problem Set 14
15(1)
1.15 Problem Set 15
16(3)
2 Number Theory
19(16)
2.1 Problem Set 1
20(1)
2.2 Problem Set 2
21(1)
2.3 Problem Set 3
21(1)
2.4 Problem Set 4
22(1)
2.5 Problem Set 5
23(1)
2.6 Problem Set 6
23(1)
2.7 Problem Set 7
24(1)
2.8 Problem Set 8
25(1)
2.9 Problem Set 9
25(1)
2.10 Problem Set 10
26(1)
2.11 Problem Set 11
27(1)
2.12 Problem Set 12
28(1)
2.13 Problem Set 13
29(1)
2.14 Problem Set 14
30(2)
2.15 Problem Set 15
32(3)
3 Algebra
35(20)
3.1 Problem Set 1
36(1)
3.2 Problem Set 2
36(1)
3.3 Problem Set 3
37(1)
3.4 Problem Set 4
38(1)
3.5 Problem Set 5
39(1)
3.6 Problem Set 6
40(1)
3.7 Problem Set 7
41(1)
3.8 Problem Set 8
42(2)
3.9 Problem Set 9
44(1)
3.10 Problem Set 10
45(1)
3.11 Problem Set 11
46(2)
3.12 Problem Set 12
48(1)
3.13 Problem Set 13
49(2)
3.14 Problem Set 14
51(1)
3.15 Problem Set 15
52(3)
4 Calculus
55(20)
4.1 Problem Set 1
56(1)
4.2 Problem Set 2
57(1)
4.3 Problem Set 3
58(1)
4.4 Problem Set 4
58(1)
4.5 Problem Set 5
59(1)
4.6 Problem Set 6
60(2)
4.7 Problem Set 7
62(1)
4.8 Problem Set 8
63(1)
4.9 Problem Set 9
64(1)
4.10 Problem Set 10
65(1)
4.11 Problem Set 11
66(2)
4.12 Problem Set 12
68(1)
4.13 Problem Set 13
69(2)
4.14 Problem Set 14
71(2)
4.15 Problem Set 15
73(2)
5 Combinatorics
75(16)
5.1 Problem Set 1
76(1)
5.2 Problem Set 2
76(1)
5.3 Problem Set 3
77(1)
5.4 Problem Set 4
78(1)
5.5 Problem Set 5
79(1)
5.6 Problem Set 6
80(1)
5.7 Problem Set 7
81(1)
5.8 Problem Set 8
82(1)
5.9 Problem Set 9
83(1)
5.10 Problem Set 10
84(1)
5.11 Problem Set 11
84(1)
5.12 Problem Set 12
85(1)
5.13 Problem Set 13
86(1)
5.14 Problem Set 14
87(2)
5.15 Problem Set 15
89(2)
6 Hints
91(6)
7 Solutions
97(428)
7.1 Geometry and Trigonometry
97(82)
7.1.1 Problem Set 1
97(3)
7.1.2 Problem Set 2
100(2)
7.1.3 Problem Set 3
102(4)
7.1.4 Problem Set 4
106(3)
7.1.5 Problem Set 5
109(5)
7.1.6 Problem Set 6
114(4)
7.1.7 Problem Set 7
118(6)
7.1.8 Problem Set 8
124(5)
7.1.9 Problem Set 9
129(4)
7.1.10 Problem Set 10
133(6)
7.1.11 Problem Set 11
139(4)
7.1.12 Problem Set 12
143(9)
7.1.13 Problem Set 13
152(9)
7.1.14 Problem Set 14
161(9)
7.1.15 Problem Set 15
170(9)
7.2 Number Theory
179(80)
7.2.1 Problem Set 1
179(2)
7.2.2 Problem Set 2
181(3)
7.2.3 Problem Set 3
184(4)
7.2.4 Problem Set 4
188(3)
7.2.5 Problem Set 5
191(5)
7.2.6 Problem Set 6
196(4)
7.2.7 Problem Set 7
200(4)
7.2.8 Problem Set 8
204(4)
7.2.9 Problem Set 9
208(6)
7.2.10 Problem Set 10
214(4)
7.2.11 Problem Set 11
218(5)
7.2.12 Problem Set 12
223(8)
7.2.13 Problem Set 13
231(9)
7.2.14 Problem Set 14
240(11)
7.2.15 Problem Set 15
251(8)
7.3 Algebra
259(84)
7.3.1 Problem Set 1
259(3)
7.3.2 Problem Set 2
262(3)
7.3.3 Problem Set 3
265(4)
7.3.4 Problem Set 4
269(4)
7.3.5 Problem Set 5
273(4)
7.3.6 Problem Set 6
277(5)
7.3.7 Problem Set 7
282(4)
7.3.8 Problem Set 8
286(6)
7.3.9 Problem Set 9
292(6)
7.3.10 Problem Set 10
298(6)
7.3.11 Problem Set 11
304(6)
7.3.12 Problem Set 12
310(7)
7.3.13 Problem Set 13
317(8)
7.3.14 Problem Set 14
325(9)
7.3.15 Problem Set 15
334(9)
7.4 Calculus
343(101)
7.4.1 Problem Set 1
343(5)
7.4.2 Problem Set 2
348(4)
7.4.3 Problem Set 3
352(4)
7.4.4 Problem Set 4
356(5)
7.4.5 Problem Set 5
361(5)
7.4.6 Problem Set 6
366(5)
7.4.7 Problem Set 7
371(7)
7.4.8 Problem Set 8
378(6)
7.4.9 Problem Set 9
384(5)
7.4.10 Problem Set 10
389(7)
7.4.11 Problem Set 11
396(6)
7.4.12 Problem Set 12
402(11)
7.4.13 Problem Set 13
413(11)
7.4.14 Problem Set 14
424(10)
7.4.15 Problem Set 15
434(10)
7.5 Combinatorics
444(81)
7.5.1 Problem Set 1
444(3)
7.5.2 Problem Set 2
447(3)
7.5.3 Problem Set 3
450(6)
7.5.4 Problem Set 4
456(4)
7.5.5 Problem Set 5
460(6)
7.5.6 Problem Set 6
466(5)
7.5.7 Problem Set 7
471(3)
7.5.8 Problem Set 8
474(6)
7.5.9 Problem Set 9
480(6)
7.5.10 Problem Set 10
486(5)
7.5.11 Problem Set 11
491(7)
7.5.12 Problem Set 12
498(6)
7.5.13 Problem Set 13
504(7)
7.5.14 Problem Set 14
511(7)
7.5.15 Problem Set 15
518(7)
8 Answers
525(6)
8.1 Problem Set 1
525(1)
8.2 Problem Set 2
525(1)
8.3 Problem Set 3
526(1)
8.4 Problem Set 4
526(1)
8.5 Problem Set 5
526(1)
8.6 Problem Set 6
527(1)
8.7 Problem Set 7
527(1)
8.8 Problem Set 8
527(1)
8.9 Problem Set 9
528(1)
8.10 Problem Set 10
528(1)
8.11 Problem Set 11
528(1)
8.12 Problem Set 12
529(1)
8.13 Problem Set 13
529(1)
8.14 Problem Set 14
529(1)
8.15 Problem Set 15
530(1)
References 531
Hayk Sedrakyan is an IMO medal winner Professor of mathematics in Paris,

France and a professional Math Olympiad Coach in Greater Boston area,

Massachusetts, USA. He has defended his PhD thesis in mathematics in UPMC-

Sorbonne University, Paris, France. Hayk is a Doctor of Mathematical Sciences

in USA, France and Armenia. He has received 3 Masters degrees in mathematics

from Germany, Austria, Armenia and has spent a small part of his PhD studies in

Italy. Hayk has authored several scientific mathematical research articles and several

books on the topic of problem solving and Olympiad style mathematics published

in USA and South Korea.

 

Nairi Sedrakyan is involved in national and international Olympiads of mathe-

matics, having been the President of Armenian Mathematics Olympiads and IMO

problem selection committee member. He is the author of one of the hardest prob-

lems ever proposed in the history of International Mathematical Olympiad (5th

problem of 37th IMO). He has been the Leader of Armenian IMO Team, jury mem-

ber of IMO, jury member and problem selection committee member of Zhautykov

International Mathematical Olympiad (ZIMO), jury member and problem selection

committee member of International Olympiad of Metropolises, the President of In-

ternational Mathematical Olympiad Tournament of the Towns in Armenia. He is

also the author of a large number of problems proposed in these Olympiads and has

authored several books on the topic of problem solving and Olympiad style math-

ematics published in USA, Russia, South Korea and Armenia. For his outstanding

teaching Nairi Sedrakyan received the title of the best teacher of the Republic of

Armenia and has been awarded with a special gift from the Prime Minister.