1 Introduction to Astrophysics |
|
1 | (90) |
|
|
1 | (6) |
|
|
7 | (1) |
|
|
8 | (7) |
|
1.3.1 Absolute Magnitude and Distance |
|
|
9 | (1) |
|
1.3.2 MagnitudeLuminosity Relation |
|
|
10 | (1) |
|
1.3.3 Different Photometry Systems |
|
|
11 | (1) |
|
1.3.4 Stellar Parallax and Stellar Distances |
|
|
12 | (2) |
|
1.3.5 Doppler Shift and Stellar Motions |
|
|
14 | (1) |
|
1.4 Spectral Characteristics of Stars |
|
|
15 | (2) |
|
1.5 Spectral Features and Saha's Ionization Theory |
|
|
17 | (6) |
|
1.6 Celestial Co-ordinate Systems |
|
|
23 | (3) |
|
1.7 HertzsprungRussel Diagram |
|
|
26 | (1) |
|
|
27 | (14) |
|
1.9 Stellar Evolution and Connection with HR Diagram |
|
|
41 | (12) |
|
|
53 | (9) |
|
|
62 | (7) |
|
|
62 | (1) |
|
|
63 | (2) |
|
1.11.3 Fragmentation of Molecular Clouds and Initial Mass Function (IMF) |
|
|
65 | (4) |
|
|
69 | (10) |
|
|
79 | (2) |
|
|
81 | (3) |
|
|
84 | (1) |
|
|
85 | (2) |
|
|
87 | (1) |
|
|
88 | (3) |
2 Introduction to Statistics |
|
91 | (18) |
|
|
91 | (1) |
|
|
92 | (1) |
|
2.2.1 Discrete-Continuous |
|
|
92 | (1) |
|
2.2.2 QualitativeQuantitative |
|
|
92 | (1) |
|
|
93 | (1) |
|
2.3 Frequency Distribution |
|
|
93 | (2) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
2.4 Exploratory Data Analysis |
|
|
95 | (2) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (2) |
|
|
98 | (1) |
|
|
99 | (3) |
|
|
102 | (1) |
|
|
102 | (7) |
|
2.8.1 Some Important Discrete Distribution |
|
|
103 | (4) |
|
2.8.2 Some Important Continuous Distributions |
|
|
107 | (2) |
3 Sources of Astronomical Data |
|
109 | (10) |
|
|
109 | (1) |
|
3.2 Sloan Digital Sky Survey |
|
|
109 | (5) |
|
|
114 | (1) |
|
3.4 Data on Eclipsing Binary Stars |
|
|
114 | (1) |
|
3.5 Extra Galactic Distance Data Base (EDD) (edd.ifa.hawaii.edu/index.html) |
|
|
115 | (1) |
|
|
115 | (1) |
|
3.7 Data on Gamma Ray Bursts |
|
|
115 | (1) |
|
3.8 Astronomical and Statistical Softwares |
|
|
116 | (1) |
|
|
117 | (2) |
4 Statistical Inference |
|
119 | (18) |
|
4.1 Population and Sample |
|
|
119 | (1) |
|
|
120 | (4) |
|
|
121 | (2) |
|
|
121 | (1) |
|
|
122 | (1) |
|
4.2.1.3 Maximum Likelihood Estimator (MLE) |
|
|
123 | (1) |
|
4.2.2 Interval Estimation |
|
|
123 | (1) |
|
4.3 Testing of Hypothesis |
|
|
124 | (4) |
|
|
125 | (1) |
|
4.3.2 One Sample and Two Sample Tests |
|
|
126 | (2) |
|
4.3.3 Common Distribution Test |
|
|
128 | (1) |
|
4.4 Empirical Distribution Function |
|
|
128 | (2) |
|
4.5 Nonparametric Approaches |
|
|
130 | (5) |
|
4.5.1 KolmogorovSmirnov One Sample Test |
|
|
130 | (1) |
|
4.5.2 KolmogorovSmirnov Two Sample Test |
|
|
131 | (1) |
|
|
132 | (1) |
|
4.5.4 Wilcoxon Rank-Sum Test |
|
|
133 | (1) |
|
4.5.5 KruskalWallis Two Sample Test |
|
|
134 | (1) |
|
|
135 | (2) |
5 Advanced Regression and Its Applications with Measurement Error |
|
137 | (18) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
138 | (4) |
|
5.3.1 Estimation of Parameters in Multiple Regression |
|
|
139 | (2) |
|
|
141 | (1) |
|
5.3.3 Regression Line Through the Origin |
|
|
142 | (1) |
|
5.4 Effectiveness of the Fitted Model |
|
|
142 | (1) |
|
5.5 Best Subset Selection |
|
|
143 | (3) |
|
5.5.1 Forward and Backward Stepwise Regression |
|
|
144 | (1) |
|
|
144 | (1) |
|
5.5.3 Least Absolute Shrinkage and Selection Operator (LASSO) |
|
|
145 | (1) |
|
5.5.4 Least Angle Regression (LAR) |
|
|
145 | (1) |
|
|
146 | (1) |
|
5.7 Regression Problem in Astronomical Research (Mondal et al. 2010) |
|
|
147 | (7) |
|
5.7.1 Regression Planes and Symmetric Regression Plane |
|
|
149 | (3) |
|
5.7.2 The Symmetric Regression Plane with Intercept |
|
|
152 | (2) |
|
|
154 | (1) |
6 Missing Observations and Imputation |
|
155 | (8) |
|
|
155 | (1) |
|
6.2 Missing Data Mechanism |
|
|
155 | (1) |
|
6.2.1 Missingness Completely at Random (MCAR) |
|
|
155 | (1) |
|
6.2.2 Missingness at Random (MAR) |
|
|
156 | (1) |
|
6.2.3 Missingness that Depends on Unobserved Predictors and the Missing Value Itself |
|
|
156 | (1) |
|
6.3 Analysis of Data with Missing Values |
|
|
156 | (3) |
|
6.3.1 Complete Case Analysis |
|
|
156 | (1) |
|
|
157 | (7) |
|
|
157 | (1) |
|
6.3.2.2 Hot Deck Imputation (Andridge and Little 2010) |
|
|
157 | (1) |
|
6.3.2.3 Cold Deck Imputation (Shao 2000) |
|
|
158 | (1) |
|
6.3.2.4 Warm Deck Imputation |
|
|
159 | (1) |
|
6.4 Likelihood Based Estimation: EM Algorithm |
|
|
159 | (2) |
|
|
161 | (1) |
|
|
162 | (1) |
7 Dimension Reduction and Clustering |
|
163 | (30) |
|
|
163 | (1) |
|
7.2 Principal Component Analysis |
|
|
164 | (8) |
|
7.2.1 An Example Related to Application of PCA (Babu et al. 2009) |
|
|
167 | (5) |
|
7.2.1.1 The Correlation Vector Diagram (Biplot) |
|
|
169 | (3) |
|
7.3 Independent Component Analysis |
|
|
172 | (10) |
|
7.3.1 ICA by Maximization of Non-Gaussianity |
|
|
175 | (1) |
|
7.3.2 Approximation of Negentropy |
|
|
176 | (1) |
|
7.3.3 The FastICA Algorithm |
|
|
176 | (1) |
|
|
177 | (2) |
|
7.3.5 An Example (Chattopadhyay et al. 2013) |
|
|
179 | (3) |
|
|
182 | (8) |
|
7.4.1 Method of Estimation |
|
|
185 | (3) |
|
|
188 | (2) |
|
|
190 | (3) |
8 Clustering, Classification and Data Mining |
|
193 | (24) |
|
|
193 | (1) |
|
8.2 Hierarchical Cluster Technique |
|
|
193 | (3) |
|
8.2.1 Agglomerative Methods |
|
|
194 | (1) |
|
|
194 | (1) |
|
8.2.3 Single Linkage Clustering |
|
|
195 | (1) |
|
8.2.4 Complete Linkage Clustering |
|
|
195 | (1) |
|
8.2.5 Average Linkage Clustering |
|
|
196 | (1) |
|
8.3 Partitioning Clustering: k-Means Method |
|
|
196 | (1) |
|
|
197 | (3) |
|
8.5 An Example (Chattopadhyay et al. 2007) |
|
|
200 | (7) |
|
8.5.1 Cluster Analysis of BATSE Sample and Discriminant Analysis |
|
|
201 | (3) |
|
8.5.2 Cluster Analysis of HETE 2 and Swift Samples |
|
|
204 | (3) |
|
8.6 Clustering for Large Data Sets: Data Mining |
|
|
207 | (8) |
|
8.6.1 Subspace Clustering |
|
|
207 | (2) |
|
8.6.2 Clustering in Arbitrary Subspace Based on Hough Transform: An Application (Chattopadhyay et al. 2013) |
|
|
209 | (14) |
|
|
211 | (1) |
|
|
211 | (1) |
|
8.6.2.3 Experimental Evaluation |
|
|
211 | (1) |
|
8.6.2.4 Properties of the Groups |
|
|
212 | (3) |
|
|
215 | (2) |
9 Time Series Analysis |
|
217 | (24) |
|
|
217 | (1) |
|
9.2 Several Components of a Time Series |
|
|
218 | (1) |
|
9.3 How to Remove Various Deterministic Components from a Time Series |
|
|
219 | (1) |
|
9.4 Stationary Time Series and Its Significance |
|
|
220 | (1) |
|
9.5 Autocorrelations and Correlogram |
|
|
220 | (1) |
|
9.6 Stochastic Process and Stationary Process |
|
|
221 | (2) |
|
9.7 Different Stochastic Process Used for Modelling |
|
|
223 | (5) |
|
9.7.1 Linear Stationary Models |
|
|
223 | (4) |
|
9.7.2 Linear Non Stationary Model |
|
|
227 | (1) |
|
9.8 Fitting Models and Estimation of Parameters |
|
|
228 | (2) |
|
|
230 | (2) |
|
9.10 Spectrum and Spectral Analysis |
|
|
232 | (3) |
|
9.11 Cross-Correlation Function (Wcross(0)) |
|
|
235 | (5) |
|
|
240 | (1) |
10 Monte Carlo Simulation |
|
241 | (36) |
|
10.1 Generation of Random Numbers |
|
|
242 | (3) |
|
|
245 | (1) |
|
10.3 Generation of Random Numbers from Various Distributions |
|
|
246 | (10) |
|
|
256 | (2) |
|
|
258 | (3) |
|
10.6 Markov Chain Monte Carlo (MCMC) |
|
|
261 | (1) |
|
10.7 MetropolisHastings Method |
|
|
261 | (14) |
|
|
275 | (2) |
11 Use of Softwares |
|
277 | (66) |
|
|
277 | (1) |
|
|
277 | (1) |
|
11.3 Advantages of R Programming |
|
|
278 | (1) |
|
11.4 How to Get R Under Ubuntu Operating System |
|
|
279 | (1) |
|
|
279 | (13) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
281 | (4) |
|
|
285 | (7) |
|
11.6 Some Statistical Codes in R |
|
|
292 | (49) |
|
Appendix 303 About the Authors |
|
|
341 | (2) |
Index |
|
343 | |