Preface |
|
xxi | |
|
|
xxv | |
|
|
xxix | |
|
|
1 | (32) |
|
|
1 | (1) |
|
1.1 The Black-Scholes Model |
|
|
1 | (1) |
|
1.2 Dynamic Model for an Asset |
|
|
2 | (3) |
|
1.2.1 Stock Exchange Data |
|
|
2 | (1) |
|
1.2.2 Continuous Time Models |
|
|
2 | (2) |
|
1.2.3 Joint Distribution of Returns |
|
|
4 | (1) |
|
1.2.4 Simulation of a Geometric Brownian Motion |
|
|
4 | (1) |
|
1.2.5 Joint Law of Prices |
|
|
5 | (1) |
|
1.3 Estimation of Parameters |
|
|
5 | (1) |
|
|
6 | (3) |
|
1.4.1 Estimation of Parameters for Apple |
|
|
7 | (2) |
|
1.5 Black-Scholes Formula |
|
|
9 | (5) |
|
1.5.1 European Call Option |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.5.1.2 Early Exercise of an American Call Option |
|
|
10 | (1) |
|
1.5.2 Partial Differential Equation for Option Values |
|
|
11 | (1) |
|
1.5.3 Option Value as an Expectation |
|
|
11 | (1) |
|
1.5.3.1 Equivalent Martingale Measures and Pricing of Options |
|
|
12 | (1) |
|
|
13 | (1) |
|
1.5.4.1 Continuously Paid Dividends |
|
|
13 | (1) |
|
|
14 | (6) |
|
1.6.1 Greeks for a European Call Option |
|
|
15 | (1) |
|
1.6.2 Implied Distribution |
|
|
16 | (1) |
|
1.6.3 Error on the Option Value |
|
|
16 | (3) |
|
|
19 | (1) |
|
1.6.4.1 Problems with Implied Volatility |
|
|
20 | (1) |
|
1.7 Estimation of Greeks using the Broadie-Glasserman Methodologies |
|
|
20 | (4) |
|
|
21 | (2) |
|
1.7.2 Likelihood Ratio Method |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (3) |
|
1.10 Assignment Questions |
|
|
27 | (1) |
|
1.A Justification of the Black-Scholes Equation |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (4) |
|
1.C.1 Proof of Proposition 1.3.1 |
|
|
29 | (1) |
|
1.C.2 Proof of Proposition 1.4.1 |
|
|
30 | (1) |
|
1.C.3 Proof of Proposition 1.6.1 |
|
|
30 | (1) |
|
|
30 | (3) |
|
2 Multivariate Black-Scholes Model |
|
|
33 | (30) |
|
|
33 | (1) |
|
2.1 Black-Scholes Model for Several Assets |
|
|
33 | (3) |
|
2.1.1 Representation of a Multivariate Brownian Motion |
|
|
34 | (1) |
|
2.1.2 Simulation of Correlated Geometric Brownian Motions |
|
|
34 | (1) |
|
|
35 | (1) |
|
2.1.4 Joint Distribution of the Returns |
|
|
35 | (1) |
|
2.2 Estimation of Parameters |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (4) |
|
2.3.1 Parametrization with the Correlation Matrix |
|
|
38 | (1) |
|
2.3.2 Parametrization with the Volatility Vector |
|
|
38 | (2) |
|
2.3.3 Estimation of Parameters for Apple and Microsoft |
|
|
40 | (1) |
|
2.4 Evaluation of Options on Several Assets |
|
|
41 | (6) |
|
2.4.1 Partial Differential Equation for Option Values |
|
|
41 | (1) |
|
2.4.2 Option Value as an Expectation |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (3) |
|
|
47 | (3) |
|
2.5.1 Error on the Option Value |
|
|
47 | (1) |
|
2.5.2 Extension of the Broadie-Glasserman Methodologies for Options on Several Assets |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
51 | (2) |
|
|
53 | (1) |
|
|
54 | (1) |
|
2.A.1 Evaluation of E {eaZ N(b + cZ)} |
|
|
54 | (1) |
|
2.B Proofs of the Results |
|
|
54 | (9) |
|
2.B.1 Proof of Proposition 2.1.1 |
|
|
54 | (1) |
|
2.B.2 Proof of Proposition 2.2.1 |
|
|
55 | (1) |
|
2.B.3 Proof of Proposition 2.3.1 |
|
|
56 | (1) |
|
2.B.4 Proof of Proposition 2.3.2 |
|
|
56 | (1) |
|
2.B.5 Proof of Proposition 2.4.1 |
|
|
57 | (2) |
|
2.B.6 Proof of Proposition 2.4.2 |
|
|
59 | (1) |
|
2.B.7 Proof of Proposition 2.5.1 |
|
|
59 | (1) |
|
2.B.8 Proof of Proposition 2.5.3 |
|
|
59 | (2) |
|
|
61 | (2) |
|
3 Discussion of the Black-Scholes Model |
|
|
63 | (40) |
|
|
63 | (1) |
|
3.1 Critiques of the Model |
|
|
63 | (6) |
|
|
63 | (3) |
|
3.1.2 Distribution of Returns and Goodness-of-Fit Tests of Normality |
|
|
66 | (2) |
|
|
68 | (1) |
|
|
68 | (1) |
|
3.2 Some Extensions of the Black-Scholes Model |
|
|
69 | (3) |
|
3.2.1 Time-Dependent Coefficients |
|
|
69 | (1) |
|
3.2.1.1 Extended Black-Scholes Formula |
|
|
70 | (1) |
|
3.2.2 Diffusion Processes |
|
|
70 | (2) |
|
3.3 Discrete Time Hedging |
|
|
72 | (2) |
|
3.3.1 Discrete Delta Hedging |
|
|
73 | (1) |
|
3.4 Optimal Quadratic Mean Hedging |
|
|
74 | (15) |
|
3.4.1 Offline Computations |
|
|
74 | (1) |
|
3.4.2 Optimal Solution of the Hedging Problem |
|
|
75 | (1) |
|
3.4.3 Relationship with Martingales |
|
|
76 | (1) |
|
3.4.3.1 Market Price vs Theoretical Price |
|
|
76 | (1) |
|
|
77 | (1) |
|
3.4.5 Application to Geometric Random Walks |
|
|
77 | (2) |
|
|
79 | (4) |
|
3.4.6 Incomplete Markovian Models |
|
|
83 | (6) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (1) |
|
3.A Tests of Serial Independence |
|
|
93 | (1) |
|
3.B Goodness-of-Fit Tests |
|
|
94 | (2) |
|
3.B.1 Cramer-von Mises Test |
|
|
95 | (1) |
|
3.B.1.1 Algorithms for Approximating the P-Value |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
3.C.1 Examples of Kernels |
|
|
97 | (1) |
|
3.D Limiting Behavior of the Delta Hedging Strategy |
|
|
97 | (1) |
|
3.E Optimal Hedging for the Binomial Tree |
|
|
98 | (2) |
|
|
100 | (3) |
|
|
100 | (3) |
|
4 Measures of Risk and Performance |
|
|
103 | (44) |
|
|
103 | (1) |
|
|
103 | (5) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
4.1.4 Coherent Measures of Risk |
|
|
105 | (1) |
|
|
106 | (1) |
|
4.1.5 Coherent Measures of Risk with Respect to a Stochastic Order |
|
|
107 | (1) |
|
|
107 | (1) |
|
4.1.5.2 Hazard Rate Order |
|
|
107 | (1) |
|
4.2 Estimation of Measures of Risk by Monte Carlo Methods |
|
|
108 | (8) |
|
|
109 | (1) |
|
4.2.2 Nonparametric Estimation of the Distribution Function |
|
|
109 | (1) |
|
4.2.2.1 Precision of the Estimation of the Distribution Function |
|
|
109 | (2) |
|
4.2.3 Nonparametric Estimation of the VaR |
|
|
111 | (2) |
|
4.2.3.1 Uniform Estimation of Quantiles |
|
|
113 | (1) |
|
4.2.4 Estimation of Expected Shortfall |
|
|
114 | (2) |
|
4.2.5 Advantages and Disadvantages of the Monte Carlo Methodology |
|
|
116 | (1) |
|
4.3 Measures of Risk and the Delta-Gamma Approximation |
|
|
116 | (10) |
|
4.3.1 Delta-Gamma Approximation |
|
|
117 | (1) |
|
4.3.2 Delta-Gamma-Normal Approximation |
|
|
117 | (1) |
|
4.3.3 Moment Generating Function and Characteristic Function of Q |
|
|
118 | (1) |
|
4.3.4 Partial Monte Carlo Method |
|
|
119 | (1) |
|
4.3.4.1 Advantages and Disadvantages of the Methodology |
|
|
120 | (1) |
|
4.3.5 Edgeworth and Cornish-Fisher Expansions |
|
|
120 | (1) |
|
4.3.5.1 Edgeworth Expansion for the Distribution Function |
|
|
120 | (1) |
|
4.3.5.2 Advantages and Disadvantages of the Edge-worth Expansion |
|
|
121 | (1) |
|
4.3.5.3 Cornish-Fisher Expansion |
|
|
121 | (1) |
|
4.3.5.4 Advantages and Disadvantages of the Cornish-Fisher Expansion |
|
|
122 | (1) |
|
4.3.6 Saddlepoint Approximation |
|
|
122 | (1) |
|
4.3.6.1 Approximation of the Density |
|
|
123 | (1) |
|
4.3.6.2 Approximation of the Distribution Function |
|
|
124 | (1) |
|
4.3.6.3 Advantages and Disadvantages of the Methodology |
|
|
124 | (1) |
|
4.3.7 Inversion of the Characteristic Function |
|
|
125 | (1) |
|
4.3.7.1 Davies Approximation |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
126 | (5) |
|
4.4.1 Axiomatic Approach of Cherny-Madan |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
4.4.4.1 Relationship with Expectiles |
|
|
128 | (1) |
|
4.4.4.2 Gaussian Case and the Sharpe Ratio |
|
|
129 | (1) |
|
4.4.4.3 Relationship with Stochastic Dominance |
|
|
130 | (1) |
|
4.4.4.4 Estimation of Omega and G |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
131 | (3) |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (1) |
|
4.C.1 Estimation of the Mean Excess Function |
|
|
136 | (1) |
|
4.D Bootstrap Methodology |
|
|
136 | (1) |
|
4.D.1 Bootstrap Algorithm |
|
|
136 | (1) |
|
|
137 | (1) |
|
4.F Saddlepoint Approximation of a Continuous Distribution Function |
|
|
137 | (1) |
|
4.G Complex Numbers in MATLAB |
|
|
138 | (1) |
|
|
139 | (1) |
|
4.1 Proofs of the Results |
|
|
139 | (8) |
|
4.I.1 Proof of Proposition 4.1.1 |
|
|
139 | (1) |
|
4.I.2 Proof of Proposition 4.1.3 |
|
|
140 | (1) |
|
4.I.3 Proof of Proposition 4.2.1 |
|
|
141 | (1) |
|
4.I.4 Proof of Proposition 4.2.2 |
|
|
141 | (1) |
|
4.I.5 Proof of Proposition 4.3.1 |
|
|
142 | (1) |
|
4.I.6 Proof of Proposition 4.4.1 |
|
|
143 | (1) |
|
4.I.7 Proof of Proposition 4.4.2 |
|
|
143 | (1) |
|
4.I.8 Proof of Proposition 4.4.4 |
|
|
144 | (1) |
|
|
144 | (3) |
|
5 Modeling Interest Rates |
|
|
147 | (36) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
148 | (12) |
|
5.2.1 Ornstein-Uhlenbeck Processes |
|
|
149 | (1) |
|
5.2.2 Change of Measurement and Time Scales |
|
|
149 | (1) |
|
5.2.3 Properties of Ornstein-Uhlenbeck Processes |
|
|
150 | (1) |
|
5.2.3.1 Moments of the Ornstein-Uhlenbeck Process |
|
|
150 | (1) |
|
5.2.3.2 Stationary Distribution of the Ornstein-Uhlenbeck Process |
|
|
151 | (1) |
|
5.2.4 Value of Zero-Coupon Bonds under a Vasicek Model |
|
|
151 | (1) |
|
5.2.4.1 Vasicek Formula for the Value of a Bond |
|
|
152 | (1) |
|
5.2.4.2 Annualized Bond Yields |
|
|
152 | (1) |
|
5.2.5 Estimation of the Parameters of the Vasicek Model Using Zero-Coupon Bonds |
|
|
153 | (1) |
|
5.2.5.1 Measurement and Time Scales |
|
|
154 | (1) |
|
5.2.5.2 Duan Approach for the Estimation of Non Observable Data |
|
|
154 | (1) |
|
5.2.5.3 Joint Conditional Density of the Implied Rates |
|
|
155 | (1) |
|
5.2.5.4 Change of Variables Formula |
|
|
156 | (1) |
|
5.2.5.5 Application of the Change of Variable Formula to the Vasicek Model |
|
|
156 | (2) |
|
5.2.5.6 Precision of the Estimation |
|
|
158 | (2) |
|
5.3 Cox-Ingersoll-Ross (CIR) Model |
|
|
160 | (10) |
|
5.3.1 Representation of the Feller Process |
|
|
160 | (2) |
|
5.3.1.1 Properties of the Feller Process |
|
|
162 | (1) |
|
5.3.1.2 Measurement and Time Scales |
|
|
163 | (1) |
|
5.3.2 Value of Zero-Coupon Bonds under a CIR Model |
|
|
163 | (1) |
|
5.3.2.1 Formula for the Value of a Zero-Coupon Bond under the CIR Model |
|
|
164 | (1) |
|
5.3.2.2 Annualized Bond Yields |
|
|
165 | (1) |
|
5.3.2.3 Value of a Call Option on a Zero-Coupon Bond |
|
|
165 | (1) |
|
|
166 | (1) |
|
5.3.3 Parameters Estimation of the CIR Model Using Zero-Coupon Bonds |
|
|
166 | (1) |
|
5.3.3.1 Measurement and Time Scales |
|
|
167 | (1) |
|
5.3.3.2 Joint Conditional Density of the Implied Rates |
|
|
167 | (1) |
|
5.3.3.3 Application of the Change of Variable Formula for the CIR Model |
|
|
168 | (1) |
|
5.3.3.4 Precision of the Estimation |
|
|
169 | (1) |
|
5.4 Other Models for the Spot Rates |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
172 | (3) |
|
|
175 | (1) |
|
5.A Interpretation of the Stochastic Integral |
|
|
175 | (1) |
|
5.B Integral of a Gaussian Process |
|
|
176 | (1) |
|
5.C Estimation Error for a Ornstein-Uhlenbeck Process |
|
|
176 | (2) |
|
5.D Proofs of the Results |
|
|
178 | (5) |
|
5.D.1 Proof of Proposition 5.2.1 |
|
|
178 | (1) |
|
5.D.2 Proof of Proposition 5.2.2 |
|
|
178 | (1) |
|
5.D.3 Proof of Proposition 5.3.1 |
|
|
179 | (1) |
|
5.D.4 Proof of Proposition 5.3.2 |
|
|
180 | (1) |
|
5.D.5 Proof of Proposition 5.3.3 |
|
|
180 | (1) |
|
|
180 | (3) |
|
|
183 | (40) |
|
|
183 | (1) |
|
|
183 | (1) |
|
6.2 Stochastic Processes with Jumps |
|
|
184 | (4) |
|
6.2.1 Simulation of a Poisson Process over a Fixed Time Interval |
|
|
185 | (1) |
|
6.2.2 Jump-Diffusion Models |
|
|
185 | (1) |
|
|
186 | (1) |
|
6.2.4 Kou Jump-Diffusion Model |
|
|
187 | (1) |
|
6.2.5 Weighted-Symmetric Models for the Jumps |
|
|
187 | (1) |
|
|
188 | (4) |
|
6.3.1 Random Walk Representation |
|
|
188 | (1) |
|
|
189 | (1) |
|
6.3.3 Infinitely Divisible Distributions |
|
|
190 | (1) |
|
6.3.4 Sample Path Properties |
|
|
190 | (1) |
|
6.3.4.1 Number of Jumps of a Levy Process |
|
|
191 | (1) |
|
|
191 | (1) |
|
6.4 Examples of Levy Processes |
|
|
192 | (5) |
|
|
192 | (1) |
|
6.4.2 Inverse Gaussian Process |
|
|
193 | (1) |
|
6.4.2.1 Simulation of Tα,β |
|
|
193 | (1) |
|
6.4.3 Generalized Inverse Gaussian Distribution |
|
|
194 | (1) |
|
6.4.4 Variance Gamma Process |
|
|
194 | (1) |
|
|
195 | (2) |
|
6.5 Change of Distribution |
|
|
197 | (6) |
|
|
197 | (1) |
|
6.5.2 Examples of Application |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
199 | (1) |
|
6.5.2.3 Variance Gamma Process |
|
|
199 | (1) |
|
6.5.2.4 Normal Inverse Gaussian Process |
|
|
199 | (1) |
|
6.5.3 Application to Option Pricing |
|
|
199 | (1) |
|
6.5.4 General Change of Measure |
|
|
200 | (1) |
|
|
201 | (2) |
|
6.6 Model Implementation and Estimation of Parameters |
|
|
203 | (12) |
|
6.6.1 Distributional Properties |
|
|
204 | (1) |
|
6.6.1.1 Serial Independence |
|
|
204 | (1) |
|
6.6.1.2 Levy Process vs Brownian Motion |
|
|
204 | (1) |
|
6.6.2 Estimation Based on the Cumulants |
|
|
205 | (1) |
|
6.6.2.1 Estimation of the Cumulants |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
209 | (1) |
|
6.6.3 Estimation Based on the Maximum Likelihood Method |
|
|
209 | (6) |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
6.A Modified Bessel Functions of the Second Kind |
|
|
217 | (1) |
|
6.B Asymptotic Behavior of the Cumulants |
|
|
218 | (1) |
|
6.C Proofs of the Results |
|
|
219 | (4) |
|
6.C.1 Proof of Lemma 6.5.1 |
|
|
219 | (1) |
|
6.C.2 Proof of Corollary 6.5.2 |
|
|
219 | (1) |
|
6.C.3 Proof of Proposition 6.6.1 |
|
|
220 | (1) |
|
6.C.4 Proof of Proposition 6.4.1 |
|
|
220 | (1) |
|
|
221 | (2) |
|
7 Stochastic Volatility Models |
|
|
223 | (34) |
|
|
223 | (1) |
|
|
223 | (5) |
|
|
224 | (2) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
7.2 Estimation of Parameters |
|
|
228 | (7) |
|
7.2.1 Application for GARCH(p,q) Models |
|
|
229 | (1) |
|
|
230 | (1) |
|
7.2.3 Goodness-of-Fit and Pseudo-Observations |
|
|
230 | (2) |
|
7.2.4 Estimation and Goodness-of-Fit When the Innovations Are Not Gaussian |
|
|
232 | (3) |
|
7.3 Duan Methodology of Option Pricing |
|
|
235 | (4) |
|
|
235 | (2) |
|
7.3.2 Continuous Time Limit |
|
|
237 | (1) |
|
7.3.2.1 A New Parametrization |
|
|
238 | (1) |
|
7.4 Stochastic Volatility Model of Hull-White |
|
|
239 | (7) |
|
7.4.1 Market Price of Volatility Risk |
|
|
239 | (1) |
|
7.4.2 Expectations vs Partial Differential Equations |
|
|
240 | (1) |
|
7.4.3 Option Price as an Expectation |
|
|
240 | (2) |
|
7.4.4 Approximation of Expectations |
|
|
242 | (1) |
|
7.4.4.1 Monte Carlo Methods |
|
|
242 | (1) |
|
7.4.4.2 Taylor Series Expansion |
|
|
242 | (1) |
|
7.4.4.3 Edgeworth and Gram-Charlier Expansions |
|
|
243 | (2) |
|
7.4.4.4 Approximate Distribution |
|
|
245 | (1) |
|
7.5 Stochastic Volatility Model of Heston |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
247 | (2) |
|
|
249 | (1) |
|
|
250 | (1) |
|
7.A.1 Implementation Issues |
|
|
250 | (1) |
|
7.B Proofs of the Results |
|
|
251 | (6) |
|
7.B.1 Proof of Proposition 7.1.1 |
|
|
251 | (2) |
|
7.B.2 Proof of Proposition 7.4.1 |
|
|
253 | (1) |
|
7.B.3 Proof of Proposition 7.4.2 |
|
|
254 | (1) |
|
|
254 | (3) |
|
8 Copulas and Applications |
|
|
257 | (88) |
|
|
257 | (1) |
|
8.1 Weak Replication of Hedge Funds |
|
|
257 | (2) |
|
|
258 | (1) |
|
|
259 | (7) |
|
8.2.1 n-th to Default Swap |
|
|
259 | (1) |
|
8.2.2 Simple Model for Default Time |
|
|
260 | (1) |
|
8.2.3 Joint Dynamics of Xi and Yi |
|
|
261 | (1) |
|
8.2.4 Simultaneous Evolution of Several Markov Chains |
|
|
262 | (1) |
|
|
262 | (2) |
|
8.2.5 Continuous Time Model |
|
|
264 | (2) |
|
8.2.5.1 Modeling the Default Time of a Firm |
|
|
266 | (1) |
|
8.2.6 Modeling Dependence Between Several Default Times |
|
|
266 | (1) |
|
|
266 | (5) |
|
8.3.1 An Image is Worth a Thousand Words |
|
|
267 | (2) |
|
8.3.2 Joint Distribution, Margins and Copulas |
|
|
269 | (1) |
|
8.3.3 Visualizing Dependence |
|
|
269 | (2) |
|
|
271 | (5) |
|
8.4.1 Examples of Copulas |
|
|
271 | (1) |
|
8.4.2 Sklar Theorem in the Bivariate Case |
|
|
272 | (2) |
|
8.4.3 Applications for Simulation |
|
|
274 | (1) |
|
8.4.4 Simulation of (U1, U2) ~ C |
|
|
274 | (1) |
|
8.4.5 Modeling Dependence with Copulas |
|
|
275 | (1) |
|
8.4.6 Positive Quadrant Dependence (PQD) Order |
|
|
276 | (1) |
|
8.5 Measures of Dependence |
|
|
276 | (17) |
|
8.5.1 Estimation of a Bivariate Copula |
|
|
278 | (1) |
|
8.5.1.1 Precision of the Estimation of the Empirical Copula |
|
|
278 | (1) |
|
8.5.1.2 Tests of Independence Based on the Empirical Copula |
|
|
278 | (2) |
|
|
280 | (1) |
|
8.5.2.1 Estimation of Kendall Function |
|
|
281 | (1) |
|
8.5.2.2 Precision of the Estimation of the Kendall Function |
|
|
282 | (1) |
|
8.5.2.3 Tests of Independence Based on the Empirical Kendall Function |
|
|
282 | (4) |
|
|
286 | (1) |
|
8.5.3.1 Estimation of Kendall Tau |
|
|
286 | (1) |
|
8.5.3.2 Precision of the Estimation of Kendall Tau |
|
|
287 | (1) |
|
|
287 | (1) |
|
8.5.4.1 Estimation of Spearman Rho |
|
|
288 | (1) |
|
8.5.4.2 Precision of the Estimation of Spearman Rho |
|
|
288 | (1) |
|
8.5.5 van der Waerden Rho |
|
|
289 | (1) |
|
8.5.5.1 Estimation of van der Waerden Rho |
|
|
290 | (1) |
|
8.5.5.2 Precision of the Estimation of van der Waerden Rho |
|
|
290 | (1) |
|
8.5.6 Other Measures of Dependence |
|
|
291 | (1) |
|
8.5.6.1 Estimation of ρ(J) |
|
|
291 | (1) |
|
8.5.6.2 Precision of the Estimation of ρ(J) |
|
|
292 | (1) |
|
|
292 | (1) |
|
|
293 | (4) |
|
|
294 | (1) |
|
8.6.2 Conditional Distributions |
|
|
294 | (1) |
|
8.6.2.1 Applications of Theorem 8.6.2 |
|
|
294 | (1) |
|
8.6.3 Stochastic Orders for Dependence |
|
|
295 | (1) |
|
8.6.3.1 Frechet-Hoeffding Bounds |
|
|
295 | (1) |
|
|
296 | (1) |
|
8.6.3.3 Supermodular Order |
|
|
296 | (1) |
|
|
297 | (14) |
|
8.7.1 Independence Copula |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
298 | (1) |
|
8.7.3.1 Simulation of Observations from a Gaussian Copula |
|
|
299 | (1) |
|
|
299 | (1) |
|
8.7.4.1 Simulation of Observations from a Student Copula |
|
|
300 | (1) |
|
8.7.5 Other Elliptical Copulas |
|
|
300 | (1) |
|
8.7.6 Archimedean Copulas |
|
|
301 | (1) |
|
8.7.6.1 Financial Modeling |
|
|
301 | (1) |
|
8.7.6.2 Recursive Formulas |
|
|
301 | (2) |
|
|
303 | (1) |
|
8.7.6.4 Kendall Tau for Archimedean Copulas |
|
|
303 | (1) |
|
8.7.6.5 Simulation of Observations from an Archimedean Copula |
|
|
304 | (1) |
|
|
304 | (1) |
|
8.7.7.1 Simulation of Observations from a Clayton Copula |
|
|
305 | (1) |
|
|
305 | (1) |
|
8.7.8.1 Simulation of Observations from a Gumbel Copula |
|
|
306 | (1) |
|
|
306 | (1) |
|
8.7.9.1 Simulation of Observations from a Frank Copula |
|
|
307 | (1) |
|
8.7.10 Ali-Mikhail-Haq Family |
|
|
308 | (1) |
|
8.7.10.1 Simulation of Observations from an Ali-Mikhail-Haq Copula |
|
|
308 | (1) |
|
8.7.11 PQD Order for Archimedean Copula Families |
|
|
309 | (1) |
|
8.7.12 Farlie-Gumbel-Morgenstern Family |
|
|
309 | (1) |
|
|
310 | (1) |
|
8.7.14 Other Copula Families |
|
|
310 | (1) |
|
8.8 Estimation of the Parameters of Copula Models |
|
|
311 | (4) |
|
8.8.1 Considering Serial Dependence |
|
|
311 | (1) |
|
8.8.2 Estimation of Parameters: The Parametric Approach |
|
|
312 | (1) |
|
8.8.2.1 Advantages and Disadvantages |
|
|
312 | (1) |
|
8.8.3 Estimation of Parameters: The Semiparametric Approach |
|
|
312 | (1) |
|
8.8.3.1 Advantages and Disadvantages |
|
|
313 | (1) |
|
8.8.4 Estimation of ρ for the Gaussian Copula |
|
|
313 | (1) |
|
8.8.5 Estimation of ρ and ν for the Student Copula |
|
|
313 | (1) |
|
8.8.6 Estimation for an Archimedean Copula Family |
|
|
314 | (1) |
|
8.8.7 Nonparametric Estimation of a Copula |
|
|
314 | (1) |
|
8.8.8 Nonparametric Estimation of Kendall Function |
|
|
315 | (1) |
|
8.9 Tests of Independence |
|
|
315 | (1) |
|
8.9.1 Test of Independence Based on the Copula |
|
|
316 | (1) |
|
8.10 Tests of Goodness-of-Fit |
|
|
316 | (3) |
|
8.10.1 Computation of P-Values |
|
|
317 | (1) |
|
8.10.2 Using the Rosenblatt Transform for Goodness-of-Fit Tests |
|
|
318 | (1) |
|
8.10.2.1 Computation of P-Values |
|
|
318 | (1) |
|
8.11 Example of Implementation of a Copula Model |
|
|
319 | (6) |
|
8.11.1 Change Point Tests |
|
|
320 | (1) |
|
8.11.2 Serial Independence |
|
|
320 | (1) |
|
8.11.3 Modeling Serial Dependence |
|
|
320 | (1) |
|
8.11.3.1 Change Point Tests for the Residuals |
|
|
320 | (1) |
|
8.11.3.2 Goodness-of-Fit for the Distribution of Innovations |
|
|
320 | (1) |
|
8.11.4 Modeling Dependence Between Innovations |
|
|
321 | (1) |
|
8.11.4.1 Test of Independence for the Innovations |
|
|
321 | (2) |
|
8.11.4.2 Goodness-of-Fit for the Copula of the Innovations |
|
|
323 | (2) |
|
|
325 | (1) |
|
|
326 | (4) |
|
8.14 Assignment Questions |
|
|
330 | (1) |
|
8.A Continuous Time Markov Chains |
|
|
331 | (1) |
|
8.B Tests of Independence |
|
|
332 | (1) |
|
8.C Polynomials Related to the Gumbel Copula |
|
|
333 | (1) |
|
8.D Polynomials Related to the Frank Copula |
|
|
334 | (1) |
|
|
334 | (2) |
|
8.E.1 Change Point Test for the Copula |
|
|
335 | (1) |
|
|
336 | (1) |
|
8.G Proofs of the Results |
|
|
336 | (9) |
|
8.G.1 Proof of Proposition 8.4.1 |
|
|
336 | (1) |
|
8.G.2 Proof of Proposition 8.4.2 |
|
|
337 | (1) |
|
8.G.3 Proof of Proposition 8.5.1 |
|
|
338 | (1) |
|
8.G.4 Proof of Theorem 8.7.1 |
|
|
338 | (1) |
|
|
339 | (6) |
|
|
345 | (30) |
|
|
345 | (1) |
|
9.1 Description of the Filtering Problem |
|
|
345 | (1) |
|
|
346 | (8) |
|
|
346 | (1) |
|
9.2.2 Filter Initialization |
|
|
347 | (1) |
|
9.2.3 Estimation of Parameters |
|
|
348 | (1) |
|
9.2.4 Implementation of the Kalman Filter |
|
|
348 | (1) |
|
|
348 | (5) |
|
9.2.5 The Kalman Filter for General Linear Models |
|
|
353 | (1) |
|
|
354 | (2) |
|
|
354 | (2) |
|
9.3.2 Implementation of the IMM Filter |
|
|
356 | (1) |
|
9.4 General Filtering Problem |
|
|
356 | (2) |
|
9.4.1 Kallianpur-Striebel Formula |
|
|
356 | (1) |
|
|
357 | (1) |
|
9.4.3 Implementing the Recursive Zakai Equation |
|
|
358 | (1) |
|
9.4.4 Solving the Filtering Problem |
|
|
358 | (1) |
|
9.5 Computation of the Conditional Densities |
|
|
358 | (2) |
|
|
359 | (1) |
|
9.5.2 Kolmogorov Equation |
|
|
360 | (1) |
|
|
360 | (6) |
|
9.6.1 Implementation of a Particle Filter |
|
|
360 | (1) |
|
9.6.2 Implementation of an Auxiliary Sampling/Importance Resampling (ASIR) Particle Filter |
|
|
361 | (2) |
|
|
363 | (1) |
|
|
363 | (1) |
|
|
364 | (1) |
|
9.6.3 Estimation of Parameters |
|
|
365 | (1) |
|
9.6.3.1 Smoothed Likelihood |
|
|
365 | (1) |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
371 | (1) |
|
9.D Proofs of the Results |
|
|
371 | (4) |
|
9.D.1 Proof of Proposition 9.2.1 |
|
|
371 | (1) |
|
|
372 | (3) |
|
10 Applications of Filtering |
|
|
375 | (32) |
|
|
375 | (1) |
|
10.1 Estimation of ARMA Models |
|
|
375 | (5) |
|
|
375 | (1) |
|
|
376 | (1) |
|
|
376 | (1) |
|
10.1.3 ARMA Processes and Filtering |
|
|
377 | (1) |
|
10.1.3.1 Implementation of the Kalman Filter in the Gaussian Case |
|
|
378 | (1) |
|
10.1.4 Estimation of Parameters of ARMA Models |
|
|
379 | (1) |
|
10.2 Regime-Switching Markov Models |
|
|
380 | (9) |
|
|
380 | (1) |
|
10.2.2 Prediction of the Regimes |
|
|
381 | (1) |
|
10.2.3 Conditional Densities and Predictions |
|
|
382 | (1) |
|
10.2.4 Estimation of the Parameters |
|
|
383 | (1) |
|
10.2.4.1 Implementation of the E-step |
|
|
383 | (1) |
|
10.2.5 M-step in the Gaussian Case |
|
|
384 | (1) |
|
10.2.6 Tests of Goodness-of-Fit |
|
|
385 | (3) |
|
10.2.7 Continuous Time Regime-Switching Markov Processes |
|
|
388 | (1) |
|
10.3 Replication of Hedge Funds |
|
|
389 | (6) |
|
10.3.0.1 Measurement of Errors |
|
|
390 | (1) |
|
10.3.1 Replication by Regression |
|
|
391 | (1) |
|
10.3.2 Replication by Kalman Filter |
|
|
391 | (1) |
|
10.3.3 Example of Application |
|
|
391 | (4) |
|
|
395 | (1) |
|
|
396 | (1) |
|
10.6 Assignment Questions |
|
|
397 | (1) |
|
|
398 | (3) |
|
10.B Sampling Moments vs Theoretical Moments |
|
|
401 | (1) |
|
10.C Rosenblatt Transform for the Regime-Switching Model |
|
|
401 | (2) |
|
10.D Proofs of the Results |
|
|
403 | (4) |
|
10.D.1 Proof of Proposition 10.1.1 |
|
|
403 | (1) |
|
10.D.2 Proof of Proposition 10.1.2 |
|
|
404 | (1) |
|
|
404 | (3) |
|
A Probability Distributions |
|
|
407 | (28) |
|
|
407 | (1) |
|
|
407 | (1) |
|
A.2 Discrete Distributions and Densities |
|
|
408 | (2) |
|
A.2.1 Expected Value and Moments of Discrete Distributions |
|
|
408 | (2) |
|
A.3 Absolutely Continuous Distributions and Densities |
|
|
410 | (2) |
|
A.3.1 Expected Value and Moments of Absolutely Continuous Distributions |
|
|
410 | (2) |
|
A.4 Characteristic Functions |
|
|
412 | (1) |
|
|
413 | (1) |
|
A.5 Moments Generating Functions and Laplace Transform |
|
|
413 | (2) |
|
|
414 | (1) |
|
|
415 | (1) |
|
A.6 Families of Distributions |
|
|
415 | (14) |
|
A.6.1 Bernoulli Distribution |
|
|
415 | (1) |
|
A.6.2 Binomial Distribution |
|
|
416 | (1) |
|
A.6.3 Poisson Distribution |
|
|
416 | (1) |
|
A.6.4 Geometric Distribution |
|
|
417 | (1) |
|
A.6.5 Negative Binomial Distribution |
|
|
417 | (1) |
|
A.6.6 Uniform Distribution |
|
|
417 | (1) |
|
A.6.7 Gaussian Distribution |
|
|
418 | (1) |
|
A.6.8 Log-Normal Distribution |
|
|
418 | (1) |
|
A.6.9 Exponential Distribution |
|
|
419 | (1) |
|
A.6.10 Gamma Distribution |
|
|
420 | (1) |
|
A.6.10.1 Properties of the Gamma Function |
|
|
420 | (1) |
|
A.6.11 Chi-Square Distribution |
|
|
421 | (1) |
|
A.6.12 Non-Central Chi-Square Distribution |
|
|
421 | (1) |
|
A.6.12.1 Simulation of Non-Central Chi-Square Variables |
|
|
421 | (1) |
|
A.6.13 Student Distribution |
|
|
422 | (1) |
|
A.6.14 Johnson SU Type Distributions |
|
|
423 | (1) |
|
|
423 | (1) |
|
A.6.16 Cauchy Distribution |
|
|
424 | (1) |
|
A.6.17 Generalized Error Distribution |
|
|
424 | (1) |
|
A.6.18 Multivariate Gaussian Distribution |
|
|
425 | (1) |
|
A.6.18.1 Representation of a Random Gaussian Vector |
|
|
425 | (1) |
|
A.6.19 Multivariate Student Distribution |
|
|
426 | (1) |
|
A.6.20 Elliptical Distributions |
|
|
426 | (3) |
|
A.6.21 Simulation of an Elliptic Distribution |
|
|
429 | (1) |
|
A.7 Conditional Densities and Joint Distributions |
|
|
429 | (1) |
|
A.7.1 Multiplication Formula |
|
|
429 | (1) |
|
A.7.2 Conditional Distribution in the Markovian Case |
|
|
430 | (1) |
|
A.7.3 Rosenblatt Transform |
|
|
430 | (1) |
|
A.8 Functions of Random Vectors |
|
|
430 | (3) |
|
|
433 | (2) |
|
|
434 | (1) |
|
B Estimation of Parameters |
|
|
435 | (20) |
|
|
435 | (1) |
|
B.1 Maximum Likelihood Principle |
|
|
435 | (2) |
|
B.2 Precision of Estimators |
|
|
437 | (1) |
|
B.2.1 Confidence Intervals and Confidence Regions |
|
|
437 | (1) |
|
B.2.2 Nonparametric Prediction Interval |
|
|
437 | (1) |
|
B.3 Properties of Estimators |
|
|
438 | (3) |
|
B.3.1 Almost Sure Convergence |
|
|
438 | (1) |
|
B.3.2 Convergence in Probability |
|
|
438 | (1) |
|
B.3.3 Convergence in Mean Square |
|
|
438 | (1) |
|
|
439 | (1) |
|
|
440 | (1) |
|
B.3.5 Bias and Consistency |
|
|
441 | (1) |
|
B.4 Central Limit Theorem for Independent Observations |
|
|
441 | (5) |
|
B.4.1 Consistency of the Empirical Mean |
|
|
442 | (1) |
|
B.4.2 Consistency of the Empirical Coefficients of Skewness and Kurtosis |
|
|
442 | (3) |
|
B.4.3 Confidence Intervals I |
|
|
445 | (1) |
|
B.4.4 Confidence Ellipsoids |
|
|
445 | (1) |
|
B.4.5 Confidence Intervals II |
|
|
445 | (1) |
|
B.5 Precision of Maximum Likelihood Estimator for Serially Independent Observations |
|
|
446 | (2) |
|
B.5.1 Estimation of Fisher Information Matrix |
|
|
446 | (2) |
|
B.6 Convergence in Probability and the Central Limit Theorem for Serially Dependent Observations |
|
|
448 | (1) |
|
B.7 Precision of Maximum Likelihood Estimator for Serially Dependent Observations |
|
|
448 | (2) |
|
|
450 | (2) |
|
B.9 Combining the Maximum Likelihood Method and the Method of Moments |
|
|
452 | (1) |
|
|
453 | (1) |
|
|
454 | (1) |
|
|
454 | (1) |
|
|
454 | (1) |
Index |
|
455 | |