Atnaujinkite slapukų nuostatas

El. knyga: Statistical Physics for Cosmic Structures

  • Formatas: PDF+DRM
  • Išleidimo metai: 23-Feb-2006
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540269991
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 23-Feb-2006
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540269991
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book has its roots in a series of collaborations in the last decade at the interface between statistical physics and cosmology. The speci c problem which initiated this research was the study of the clustering properties of galaxies as revealed by large redshift surveys, a context in which concepts of modern statistical physics (e. g. scale-invariance, fractality. . ) ?nd ready application. In recent years we have considerably broadened the range of problems in cosmology which we have addressed, treating in particular more theoretical issues about the statistical properties of standard cosmological models. What is common to all this research, however, is that it is informed by a perspective and methodology which is that of statistical physics. We can say that, beyond its speci c scienti c content, this book has an underlying thesis: such interdisciplinary research is an exciting playground for statistical physics, and one which can bring new and useful insights into cosmology. Thebook does not represent a ?nal point, but in our view, a marker in the development of this kind of research, which we believe can go very much further in the future. Indeed as we complete this book, new developments - which unfortunately we have not been able to include here - have been made on some of the themes described here. Our focus in this book is on the problem of structure in cosmology.

Recenzijos

From the reviews:









"Any book on an interdisciplinary subject must build up a self-consistent theory able to explain a great number of observations. The concepts introduced must be pertinent for the phenomena in question and sufficiently elaborated in order to extract solid conclusions in an clear and concise way. These requirements have been perfectly fulfilled in the material presented in this book. the book is highly recommendable due to the insight it gives into the field of cosmic structures, providing sound basis for further research." (J. M. Rubi, Journal of Statistical Physics, 2006)

Introduction
1(26)
Motivations and Purpose of the Book
1(1)
Structures in Statistical Physics: A New Perspective
2(6)
Structures in Statistical Physics: The Methods
8(3)
Applications to Cosmology
11(11)
Perspectives for the Future
22(5)
Part I Statistical Methods
Uniform and Correlated Mass Density Fields
27(46)
Introduction
27(4)
Basic Statistical Properties and Concepts
31(4)
Spatial Averages and Ergodicity
34(1)
Homogeneity and Homogeneity Scale
34(1)
Correlation Functions
35(9)
Characteristic Function and Cumulants Expansion
36(3)
Correlation Length
39(1)
Other Properties of the Reduced Two-Point Correlation Function
40(1)
Mass Variance
41(3)
Poisson Point Process
44(2)
Stochastic Point Processes with Spatial Correlations
46(6)
Conditional Properties
48(2)
Integrated Conditional Properties
50(1)
Detection of the Homogeneity Scale of a Discrete SPP
50(2)
Nearest Neighbor Probability Density in Point Processes
52(3)
Poisson Case
52(2)
Particle Distributions with Spatial Correlations
54(1)
Gaussian Continuous Stochastic Fields
55(3)
Power-Laws and Self-Similarity
58(3)
Mass Function and Probability Distribution
61(3)
The Random Walk and the Central Limit Theorem
64(5)
Probability Distribution of Mass Fluctuations in Large Volumes
68(1)
Gaussian Distribution as the Most Probable Probability Distribution
69(2)
Summary and Discussion
71(2)
The Power Spectrum and the Classification of Stationary Stochastic Fields
73(28)
Introduction
73(1)
General Properties
73(4)
Mathematical Definitions
73(3)
Limit Conditions
76(1)
The Power Spectrum for the Poisson Point Process and Other SPP
77(1)
The Power Spectrum and the Mass Variance: A Complete Classification
78(6)
The Complete Classification of Mass Fluctuations versus Power Spectrum
83(1)
Super-Homogeneous Mass Density Fields
84(7)
The Lattice Particle Distribution
85(3)
The One Component Plasma
88(3)
Further Analysis of Gaussian Fields
91(5)
Real Space Composition of Gaussian Fields, Correlation Length and Size of Structures
95(1)
Summary and Discussion
96(5)
Fractals
101(42)
Introduction
101(1)
The Metric Dimension
102(5)
Conditional Density
107(9)
Conditional Density and Smooth Radial Particle Distributions
109(4)
Statistically Homogeneous and Isotropic Distribution of Radial Density Profiles
113(1)
Nearest Neighbor Probability Density for Radial and Fractal Point-Particle Distributions
113(3)
The Two-Point Conditional Density
116(2)
The Conditional Variance in Spheres
118(1)
Corrections to Scaling
119(8)
Correction to Scaling: Deterministic Fractals
120(4)
Correction to Scaling: Random Fractals
124(3)
Fractal with a Crossover to Homogeneity
127(1)
Correlation, Fractals and Clustering
127(3)
Probability Distribution of Mass Fluctuations in a Fractal
130(2)
Intersection of Fractals
132(2)
Morphology and Voids
134(1)
Angular and Orthogonal Projection of Fractal Sets
134(7)
On the Uniformity of the Angular Projection
137(4)
Summary and Discussion
141(2)
Multifractals and Mass Distributions
143(24)
Introduction
143(1)
Basic Definitions
144(1)
Deterministic Multifractals
145(4)
The Multifractal Spectrum
149(2)
Random Multifractals
151(3)
Self-Similarity of Fluctuations and Multifractality in Temporal Multiplicative Processes
154(4)
Spatial Correlation in Multifractals
158(1)
Multifractals and ``Mass'' Distributions
159(2)
Summary and Discussion
161(6)
Part II Applications to Cosmology
Fluctuations in Standard Cosmological Models: A Real Space View
167(26)
Introduction
167(1)
Basic Properties of Cosmological Density Fields
167(4)
The Cosmological Origin of the HZ Spectrum
171(2)
The Real Space Correlation Function of CDM/HDM Models
173(4)
P(0) = 0 and Constraints in a Finite Sample
177(2)
CMBR Anisotropies in Direct Space
179(10)
CMBR Anisotropies and the Matter Power Spectrum
180(3)
The Origin of Oscillations in the Power Spectrum
183(1)
A Simple Example of k-Oscillations
184(1)
Oscillations in the CDM PS
185(2)
Oscillations in the CMBR Anisotropies
187(2)
Summary and Discussion
189(4)
Discrete Representation of Fluctuations in Cosmological Models
193(26)
Introduction
193(1)
Discrete versus Continuous Density Fields
194(2)
Super-Homogeneous Systems in Statistical Physics
196(1)
HZ as Equilibrium of a Modified OCP
197(2)
A First Approximation to the Effect of Displacement Fields
199(1)
Displacement Fields: Formulation of the Problem
200(3)
Effects of Displacements on One and Two-Point Properties of the Particle Distribution
203(9)
Uncorrelated Displacements
206(2)
Asymptotic Behavior of P(k) for Small k
208(1)
The Shuffled Lattice with Uncorrelated Displacements
209(3)
Correlated Displacements
212(5)
Correlated Gaussian Displacement Field
214(3)
Summary and Discussion
217(2)
Galaxy Surveys: An Introduction to Their Analysis
219(16)
Introduction
219(1)
Basic Assumptions and Definitions
220(1)
Galaxy Catalogs and Redshift
221(3)
Volume Limited Samples
224(3)
The Discovery of Large Scale Structure in Galaxy Catalogs
227(1)
Standard Characterization of Galaxy Correlations and the Assumption of Homogeneity
228(5)
Summary and Discussion
233(2)
Characterizing the Observed Distribution of Visible Matter I: The Conditional Average Density in Galaxy Catalogs
235(30)
Introduction
235(1)
The Conditional Average Density in Finite Samples
236(4)
Sample Size Smaller than the Homogeneity Scale
240(2)
The Reduced Correlation Function for a Particle Distribution with Fractal Behavior in the Sample
240(2)
Sample Size Greater Than the Homogeneity Scale
242(4)
Critical Case
243(1)
Substantially Poisson Case
244(1)
Super-Homogeneous Case
245(1)
Some Remarks
245(1)
Estimating the Average Conditional Density in a Finite Sample
246(4)
Estimators of the Average Conditional Density
247(3)
Effective Depth of Samples
250(1)
The Average Conditional Density (FS) in Real Galaxy Catalogs
250(13)
Normalization of the Average Conditional in Different VL Samples
257(2)
Estimation of the Conditional Average Luminosity Density
259(1)
Measuring the Average Mass Density Ω from Redshift Surveys
260(3)
Summary and Discussion
263(2)
Characterizing the Observed Distribution of Visible Matter II: Number Counts and Their Fluctuations
265(26)
Introduction
265(1)
Number Counts in Real Space
266(2)
Number Counts as a Function of Apparent Magnitude
268(8)
Poisson Distribution
268(3)
Simple Fractal Distribution
271(2)
Effect of Long-Ranged Correlations in Homogeneous Distributions
273(3)
Normalization of the Magnitude Counts to Real Space Properties in Euclidean Space
276(2)
Average Distance
276(1)
Normalization of Distance to Magnitude Counts
277(1)
Galaxy Counts in Real Catalogs
278(10)
Real Space Counts
279(4)
Magnitude Space Counts
283(5)
Summary and Discussion
288(3)
Luminosity in Galaxy Correlations
291(8)
Introduction
291(1)
Standard Methods for the Estimation of the Luminosity Function
292(1)
Multifractality, Luminosity and Space Distributions
293(4)
Summary and Discussion
297(2)
The Distribution of Galaxy Clusters
299(14)
Introduction
299(1)
Cluster Correlations and Multifractality
300(3)
Galaxy Cluster Correlations
303(5)
The Average Conditional Density for Galaxy Clusters
306(1)
Galaxy-Cluster Mismatch
306(2)
Luminosity Bias and the Richness-Clustering Relation
308(3)
Summary and Discussion
311(2)
Biasing a Gaussian Random Field and the Problem of Galaxy Correlations
313(22)
Introduction
313(1)
Biasing of Gaussian Random Fields
314(4)
Biasing and Real Space Correlation Properties
318(7)
Biasing and the Power Spectrum
325(5)
Summary and Discussion
330(5)
The Gravitational Field in Stochastic Particle Distributions
335(78)
Introduction
335(1)
Nearest Neighbor Force Distribution
336(2)
Gravitational Force PDF in a Poisson Particle Distribution
338(4)
Gravitational Force in Weakly Correlated Particle Distributions: the Gauss-Poisson Case
342(1)
Generalization of the Holtzmark Distribution to the Gauss-Poisson Case
343(7)
Large F Expansion
344(3)
Small F Expansion
347(1)
Comparison with Simulations
347(1)
Nearest-Neighbor Approximation for the Gauss-Poisson Case
348(2)
Gravitational Force in Fractal Point Distributions
350(1)
An Upper Limit in the Fractal Case
351(3)
Average Quadratic Force in a Fractal
354(4)
The General Importance of the Force-Force Correlation
358(2)
Summary and Discussion
360(5)
Part III Appendixes
A Scaling Behavior of the Characteristic Function for Asymptotically Small Values of k
365(4)
B Fractal Algorithms
369(6)
B.1 Cantor Set and Random Cantor Set
369(3)
B.2 Levy Flight
372(1)
B.3 Random Trema Dust
372(3)
C Cosmological Models: Basic Relations
375(6)
C.1 Cosmological Parameters
376(1)
C.1.1 Comoving (Radial) Distance
376(1)
C.1.2 Comoving (Transverse) Distance
377(1)
C.1.3 Luminosity Distance
377(1)
C.1.4 Magnitude
377(1)
C.2 Cosmological Corrections in the Analysis of Redshift Surveys
378(1)
C.2.1 Flat Cosmologies: FMD and FLD
378(2)
C.2.2 Open Model: OBD
380(1)
D Cosmological and k-Corrections to Number Counts
381(4)
D.1 k-Corrections
381(1)
D.2 k-Corrections and the Radial Number Counts
382(1)
D.3 Dependence on the Cosmological Model
383(2)
E Fractal Matter in an Open FRW Universe
385(10)
E.1 Introduction
385(1)
E.2 Friedmann Solution in an Empty Universe
386(1)
E.3 Curvature Dominated Phase
387(3)
E.4 Radiation Dominated Era
390(1)
E.5 Fluctuations in the CMBR
391(1)
E.6 Other Remarks
392(3)
F. Errors in Full Shell Estimators
395(10)
F.1 Bias and Variance of Estimators
395(1)
F.2 Unconditional Average Density
396(1)
F.3 Conditional Number of Points in a Sphere
397(1)
F.4 Integrated Conditional Density
398(1)
F.5 Conditional Average Density in Shells
399(3)
F.6 Reduced Two-Point Correlation Function
402(3)
G Non Full-Shell Estimation of Two Point Correlation Properties
405(6)
G.1 Estimators with Simple Weightings
406(1)
G.2 Other Pair Counting Estimators
407(2)
G.3 Estimation of the Conditional Density Beyond Rs
409(2)
H Estimation of the Power Spectrum
411(2)
References 413(8)
Index 421