Preface |
|
ix | |
|
|
1 | (4) |
|
|
5 | (14) |
|
2.1 Stochastic Processes and Limit Theorems |
|
|
5 | (14) |
|
3 Portfolio Theory for Dependent Return Processes |
|
|
19 | (56) |
|
3.1 Introduction to Portfolio Theory |
|
|
19 | (22) |
|
3.1.1 Mean-Variance Portfolio |
|
|
20 | (3) |
|
3.1.2 Capital Asset Pricing Model |
|
|
23 | (4) |
|
3.1.3 Arbitrage Pricing Theory |
|
|
27 | (1) |
|
3.1.4 Expected Utility Theory |
|
|
28 | (5) |
|
3.1.5 Alternative Risk Measures |
|
|
33 | (3) |
|
3.1.6 Copulas and Dependence |
|
|
36 | (2) |
|
3.1.7 Bibliographic Notes |
|
|
38 | (1) |
|
|
38 | (3) |
|
3.2 Statistical Estimation for Portfolios |
|
|
41 | (24) |
|
3.2.1 Traditional Mean-Variance Portfolio Estimators |
|
|
42 | (2) |
|
3.2.2 Pessimistic Portfolio |
|
|
44 | (2) |
|
3.2.3 Shrinkage Estimators |
|
|
46 | (2) |
|
3.2.4 Bayesian Estimation |
|
|
48 | (4) |
|
|
52 | (1) |
|
3.2.5.1 Static factor models |
|
|
52 | (3) |
|
3.2.5.2 Dynamic factor models |
|
|
55 | (3) |
|
3.2.6 High-Dimensional Problems |
|
|
58 | (1) |
|
3.2.6.1 The case of m/n → y ε (0, 1) |
|
|
59 | (3) |
|
3.2.6.2 The case of m/n → y ε (1, ∞) |
|
|
62 | (1) |
|
3.2.7 Bibliographic Notes |
|
|
63 | (1) |
|
|
63 | (2) |
|
|
65 | (10) |
|
3.3.1 Quasi-Maximum Likelihood Estimator |
|
|
66 | (2) |
|
|
68 | (1) |
|
3.3.3 Difference between the True Point and the Estimated Point |
|
|
69 | (1) |
|
|
70 | (2) |
|
3.3.5 Inference of Coefficient |
|
|
72 | (1) |
|
3.3.6 Bibliographic Notes |
|
|
73 | (2) |
|
4 Multiperiod Problem for Portfolio Theory |
|
|
75 | (38) |
|
4.1 Discrete Time Problem |
|
|
76 | (8) |
|
4.1.1 Optimal Portfolio Weights |
|
|
76 | (2) |
|
4.1.2 Consumption Investment |
|
|
78 | (2) |
|
4.1.3 Simulation Approach for VAR(1) model |
|
|
80 | (4) |
|
4.1.4 Bibliographic Notes |
|
|
84 | (1) |
|
4.2 Continuous Time Problem |
|
|
84 | (14) |
|
4.2.1 Optimal Consumption and Portfolio Weights |
|
|
85 | (5) |
|
|
90 | (1) |
|
4.2.2.1 Generalized method of moments (GMM) |
|
|
91 | (4) |
|
4.2.2.2 Threshold estimation method |
|
|
95 | (3) |
|
4.2.3 Bibliographic Notes |
|
|
98 | (1) |
|
|
98 | (15) |
|
4.3.1 μ-Weighted Universal Portfolios |
|
|
98 | (3) |
|
4.3.2 Universal Portfolios with Side Information |
|
|
101 | (3) |
|
4.3.3 Successive Constant Rebalanced Portfolios |
|
|
104 | (2) |
|
4.3.4 Universal Portfolios with Transaction Costs |
|
|
106 | (2) |
|
4.3.5 Bibliographic Notes |
|
|
108 | (1) |
|
|
109 | (4) |
|
5 Portfolio Estimation Based on Rank Statistics |
|
|
113 | (94) |
|
5.1 Introduction to Rank-Based Statisticsrank |
|
|
113 | (26) |
|
|
113 | (1) |
|
5.1.1.1 Wilcoxon's signed rank and rank sum tests |
|
|
113 | (4) |
|
5.1.1.2 Hodges--Lehmann and Chernoff--Savage |
|
|
117 | (7) |
|
5.1.2 Maximal Invariantsmaximal invariant |
|
|
124 | (1) |
|
5.1.2.1 Invariance of sample space, parameter space and tests |
|
|
124 | (1) |
|
5.1.2.2 Most powerful invariant testmost powerful invariant test |
|
|
125 | (1) |
|
5.1.3 Efficiency efficiency of Rank-Based Statistics |
|
|
126 | (1) |
|
5.1.3.1 Least favourableleast favourable density and most powerfulmost powerful test |
|
|
126 | (3) |
|
5.1.3.2 Asymptotically most powerful rank test |
|
|
129 | (8) |
|
5.1.4 U-Statistics for Stationary Processes |
|
|
137 | (2) |
|
5.2 Semiparametrically Efficient Estimation in Time Series |
|
|
139 | (31) |
|
5.2.1 Introduction to Rank-Based Theory in Time Series |
|
|
139 | (1) |
|
5.2.1.1 Testing for randomness against ARMA alternatives |
|
|
139 | (7) |
|
5.2.1.2 Testing an ARMA model against other ARMA alternatives |
|
|
146 | (3) |
|
5.2.2 Tangent Spacetangent space |
|
|
149 | (6) |
|
5.2.3 Introduction to Semiparametric Asymptotic Optimal Theory |
|
|
155 | (4) |
|
5.2.4 Semiparametrically Efficient Estimation in Time Series, and Multivariate Cases |
|
|
159 | (1) |
|
5.2.4.1 Rank-based optimal influence functions (univariate case) |
|
|
159 | (5) |
|
5.2.4.2 Rank-based optimal estimation for elliptical residuals |
|
|
164 | (6) |
|
5.3 Asymptotic Theory of Rank Order Statistics for ARCH Residual Empirical Processes |
|
|
170 | (10) |
|
5.4 Independent Component Analysis |
|
|
180 | (22) |
|
5.4.1 Introduction to Independent Component Analysis |
|
|
180 | (1) |
|
5.4.1.1 The foregoing model for financial time series |
|
|
180 | (7) |
|
5.4.1.2 ICA modeling for financial time series |
|
|
187 | (4) |
|
5.4.1.3 ICA modeling in frequency domain for time series |
|
|
191 | (11) |
|
5.5 Rank-Based Optimal Portfolio Estimation |
|
|
202 | (5) |
|
5.5.1 Portfolio Estimation Based on Ranks for Independent Components |
|
|
202 | (2) |
|
5.5.2 Portfolio Estimation Based on Ranks for Elliptical Residualselliptical residuals |
|
|
204 | (3) |
|
6 Portfolio Estimation Influenced by Non-Gaussian Innovations and Exogenous Variables |
|
|
207 | (28) |
|
6.1 Robust Portfolio Estimation under Skew-Normal Return Processes |
|
|
207 | (4) |
|
6.2 Portfolio Estimators Depending on Higher-Order Cumulant Spectra |
|
|
211 | (4) |
|
6.3 Portfolio Estimation under the Utility Function Depending on Exogenous Variables |
|
|
215 | (6) |
|
6.4 Multi-Step Ahead Portfolio Estimation |
|
|
221 | (3) |
|
|
224 | (3) |
|
6.6 Classificationclassification by Quantile Regressionquantile regression |
|
|
227 | (2) |
|
6.7 Portfolio Estimation under Causal Variables |
|
|
229 | (6) |
|
|
235 | (48) |
|
7.1 Real Data Analysis for Portfolio Estimation |
|
|
235 | (8) |
|
|
235 | (1) |
|
|
235 | (2) |
|
|
237 | (1) |
|
|
237 | (1) |
|
7.1.3.2 Confidence region |
|
|
238 | (1) |
|
7.1.3.3 Locally stationary estimation |
|
|
239 | (1) |
|
7.1.4 Results and Discussion |
|
|
240 | (2) |
|
|
242 | (1) |
|
7.1.6 Bibliographic Notes |
|
|
243 | (1) |
|
7.2 Application for Pension Investment |
|
|
243 | (5) |
|
|
244 | (1) |
|
|
244 | (1) |
|
|
244 | (4) |
|
7.2.4 Results and Discussion |
|
|
248 | (1) |
|
|
248 | (1) |
|
7.3 Microarray Analysis Using Rank Order Statistics for ARCH Residual |
|
|
248 | (11) |
|
|
249 | (1) |
|
|
250 | (2) |
|
|
252 | (1) |
|
7.3.3.1 The rank order statistic for the ARCH residual empirical process |
|
|
252 | (1) |
|
7.3.3.2 Two-group comparison for microarray data |
|
|
252 | (2) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
254 | (1) |
|
7.3.5 Results and Discussion |
|
|
255 | (1) |
|
|
255 | (1) |
|
7.3.5.2 Affy947 expression dataset |
|
|
255 | (2) |
|
|
257 | (2) |
|
7.4 Portfolio Estimation for Spectral Density of Categorical Time Series Data |
|
|
259 | (11) |
|
|
259 | (1) |
|
|
259 | (1) |
|
7.4.2.1 Spectral Envelope |
|
|
259 | (1) |
|
7.4.2.2 Diversification analysis |
|
|
260 | (1) |
|
7.4.2.3 An extension of SpecEnv to the mean-diversification efficient frontier |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
261 | (1) |
|
7.4.3.2 DNA sequence data |
|
|
261 | (1) |
|
7.4.4 Results and Discussion |
|
|
262 | (1) |
|
|
262 | (1) |
|
7.4.4.2 DNA sequence for the BNRF1 genes |
|
|
263 | (5) |
|
|
268 | (2) |
|
7.5 Application to Real-Value Time Series Data for Corticomuscular Functional Coupling for SpecEnv and the Portfolio Study |
|
|
270 | (13) |
|
|
270 | (4) |
|
|
274 | (1) |
|
7.5.3 Results and Discussion |
|
|
274 | (9) |
|
8 Theoretical Foundations and Technicalities |
|
|
283 | |
|
8.1 Limit Theorems for Stochastic Processes |
|
|
283 | (4) |
|
8.2 Statistical Asymptotic Theory |
|
|
287 | (6) |
|
8.3 Statistical Optimal Theory |
|
|
293 | (7) |
|
8.4 Statistical Model Selection |
|
|
300 | (12) |
|
8.5 Efficient Estimation for Portfolios |
|
|
312 | (19) |
|
8.5.1 Traditional mean variance portfolio estimators |
|
|
313 | (2) |
|
8.5.2 Efficient mean variance portfolio estimators |
|
|
315 | (9) |
|
|
324 | (7) |
|
|
331 | (11) |
|
8.7 Shrinkage Interpolation for Stationary Processes |
|
|
342 | (7) |
|
|
349 | (16) |
|
|
365 | (6) |
|
|
371 | |