Atnaujinkite slapukų nuostatas

El. knyga: Statistical Quantitative Methods in Finance: From Theory to Quantitative Portfolio Management

  • Formatas: EPUB+DRM
  • Išleidimo metai: 22-Jan-2025
  • Leidėjas: APress
  • Kalba: eng
  • ISBN-13: 9798868809620
  • Formatas: EPUB+DRM
  • Išleidimo metai: 22-Jan-2025
  • Leidėjas: APress
  • Kalba: eng
  • ISBN-13: 9798868809620

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Statistical quantitative methods are vital for financial valuation models and benchmarking machine learning models in finance.





This book explores the theoretical foundations of statistical models, from ordinary least squares (OLS) to the generalized method of moments (GMM) used in econometrics. It enriches your understanding through practical examples drawn from applied finance, demonstrating the real-world applications of these concepts. Additionally, the book delves into non-linear methods and Bayesian approaches, which are becoming increasingly popular among practitioners thanks to advancements in computational resources. By mastering these topics, you will be equipped to build foundational models crucial for applied data science, a skill highly sought after by software engineering and asset management firms. The book also offers valuable insights into quantitative portfolio management, showcasing how traditional data science tools can be enhanced with machine learning models. These enhancements are illustrated through real-world examples from finance and econometrics, accompanied by Python code. This practical approach ensures that you can apply what you learn, gaining proficiency in the statsmodels library and becoming adept at designing, implementing, and calibrating your models.





By understanding and applying these statistical models, you enhance your data science skills and effectively tackle financial challenges.





 





What You Will Learn









Understand the fundamentals of linear regression and its applications in financial data analysis and prediction Apply generalized linear models for handling various types of data distributions and enhancing model flexibility Gain insights into regime switching models to capture different market conditions and improve financial forecasting Benchmark machine learning models against traditional statistical methods to ensure robustness and reliability in financial applications





 





Who This Book Is For





Data scientists, machine learning engineers, finance professionals, and software engineers
Chapter 1: Linear Regression.- Chapter 2: Generalized Linear Model.-
Chapter 3: Kernel Regression.
Chapter 4: Regime Switching Models.- Chapter
5: Bayesian Methods.- Chapter 6: Tobit Regression.
Chapter : Random Forest.-
Chapter 8: Generalized Method of Moments.- Chapter 9: Benchmarking Machine
Learning Models.
Samit Ahlawat is a portfolio manager at QSpark Investment, specializing in US equity and derivative trading. He has extensive experience in quantitative asset management and market risk management, having previously worked at JP Morgan Chase and Bank of America. His research interests include artificial intelligence, risk management, and algorithmic trading strategies. Samit holds a masters degree in numerical computation from the University of Illinois, Urbana-Champaign.